Answer:
First you have to separate real and imaginary parts of Tan(x+iy)=Tan(z)=sin(z)/cos(z)
sinz=sin(x+iy)=sinxcos(iy)+cosxsin(iy)=sinxcoshy-icosx sinhy
cosz=cos(x+iy)=cosxcos(iy)-sinxsin(iy)=cosxcoshy−isinxsinhy
Now if you plug in Tan(z) and simplify (it is easy!) you get
Tan(z)=(sin(2x)+isinh(2y))/(cos(2x)+cosh(2y))= A+iB.
This means that
A=sin(2x)/(cos(2x)+cosh(2y)) and B= sinh(2y)/(cos(2x)+cosh(2y))
Now,
A/B=sin(2x)/sinh(2y)
If any questions, let me know.
Answer:
minimum electric power consumption of the fan motor is 0.1437 Btu/s
Explanation:
given data
area = 3 ft by 3 ft
air density = 0.075 lbm/ft³
to find out
minimum electric power consumption of the fan motor
solution
we know that energy balance equation that is express as
E in - E out =
......................1
and at steady state
= 0
so we can say from equation 1
E in = E out
so
minimum power required is
E in = W = m
=
put here value
E in =
E in =
E in = 0.1437 Btu/s
minimum electric power consumption of the fan motor is 0.1437 Btu/s
Answer:
Circuit attached with explanation
Explanation:
Hi Dear,
A circuit is attached for your reference.
When you press "start" PB, the supply reaches the motor starter relay coil "M" that is also in parallel with the "start" PB which allows the motor to remain ON even when you release "start" PB as supply to relay coil is directly from supply "L" through "M".
To stop motor just press "stop" PB and the circuit breaks which de-energize the relay coil and the motor stops.
Hope this finds easy to you.