1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
3 years ago
9

In estimating the mean speed of a roadway segment,a pilot sample of 100 vehicles at this location yield a sample standard deviat

ion of 4.8 miles/ hr
Engineering
1 answer:
Oxana [17]3 years ago
8 0

Answer:

See Explanation

Explanation:

Given

n = 100

\sigma= 4.8

Required

The question is incomplete.

Given the sample size and the standard deviation, a likely question could be to calculate the standard error (SE) of the mean

This is calculated as:

SE = \frac{\sigma}{\sqrt n}

Substitute values

SE = \frac{4.8}{\sqrt{100}}

Take the positive square root of 100

SE = \frac{4.8}{10}

SE = 0.48

You might be interested in
Take water density and kinematic viscosity as p=1000 kg/m3 and v= 1x10^-6 m^2/s. (c) Water flows through an orifice plate with a
guapka [62]

Answer:

K_v=12.34

Explanation:

Given;

For orifice, loss coefficient, K₀ = 10

Diameter, D₀ = 45 mm = 0.045 m

loss coefficient of the orifice, Ko = 10

Diameter of the gate valve, Dy = 1.5D₀ = 1.5 × 0.045 m = 0.0675 m

Total head drop, Δhtotal=25 m

Discharge, Q = 10 l/s = 0.01 m³/s

Now,

the velocity of flow through orifice, Vo =   Discharge / area of the orifice

or

Vo = \frac{0.01}{\frac{\pi}{4}0.045^2}

or

Vo = 6.28 m/s

also,

the velocity of flow through gate valve, V_v =   Discharge / area of the orifice

or

V_v = \frac{0.01}{\frac{\pi}{4}0.0675^2}

or

V_v = 2.79 m/s

Now,

the total head drop = head drop at orifice + head drop at gate valve

or

25 m = K_o\frac{V_o^2}{2g}+K_v\frac{V_v^2}{2g}

where,

K_v is the loss coefficient for the gate valve

on substituting the values, we get

25 m = 10\frac{6.28^2}{2\times 9.81}+K_v\frac{2.79^2}{2\times9.81}

or

K_v\frac{2.79^2}{2\times9.81} = 4.898

or

K_v=12.34

3 0
4 years ago
A 65% efficient turbine receives 2 m^3/s of water from a reservoir. The reservoir water surface is 45 m above the centerline of
laiz [17]

Answer:

P_{out} = 508.071 kW

Given:

efficiency of the turbine, \eta = 65% = 0.65

available gross head,  H_{G} = 45 m

head loss,  H_{loss} = 5 m

Discharge, Q =  2 m^{3}

Solution:

The nozzle is 100% (say)

Available power at the inlet of the turbine,  P_{inlet} is given by:

P_{inlet} = \rho Qg(H_{G} - H_{loss})                  (1)

where

\rho = density of water = 997 kg/m^{3}

acceleration due to gravity, g = 9.8 m^{2}

Using eqn (1):

P_{inlet} = 997\times 2\times 9.8(45 - 5) = 781.65 kW

Also, efficency, \eta is given by:

\eta = \frac{P_{out}}{P_{inlet}}

0.65 = \frac{P_{out}}{781.648\times 1000}

P_{out} = 0.65\times 781.648\times 1000 = 508071 W = 508.071 kW

P_{out} = 508.071 kW

3 0
3 years ago
Your uncle has given you a newmonitor for your computer. When you attempt to connect it, you notice that none of the ports on th
juin [17]

Answer:

Go on amazon and look for HDMI -> (VGA/DVI/HDMI) what ever you need adapters.

6 0
3 years ago
Ihjpr2 ywjegnak'evsinawhe2'qwmasnh ngl,;snhy
WITCHER [35]

Answer:

ummm ok?

Explanation:

6 0
3 years ago
Read 2 more answers
The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to th
Ilia_Sergeevich [38]

Answer:

Flow velocity

50.48m/s

Pressure change at probe tip

1236.06Pa

Explanation:

Question is incomplete

The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to the flow. If the differential height between the water columns connected to the two outlets of the probe is 0.126m, determine (a) the flow velocity and (b) the pressure rise at the tip of the probe. The air temperature and pressure in the duct are 352k and 98 kPa, respectively

solution

In this question, we are asked to calculate the flow velocity and the pressure rise at the tip of probe

please check attachment for complete solution and step by step explanation

8 0
3 years ago
Other questions:
  • A computer has a two-level cache. Suppose that 60% of the memory references hit on the first level cache, 35% hit on the second
    12·1 answer
  • Modulus of resilience is: (a) Slope of elastic portion of stress- strain curve (b) Area under the elastic portion of the stress-
    12·1 answer
  • An FCC iron–carbon alloy initially containing 0.35 wt% C is exposed to an oxygen-rich and virtually carbon-free atmosphere at 14
    11·1 answer
  • Trevor and Nick are taxi drivers. Trevor drives a taxi using diesel oil while Nick drives a taxi using LPG. Whose taxi will caus
    11·1 answer
  • Differentiate between pulser switch and data switch
    8·1 answer
  • Water steam enters a turbine at a temperature of 400 o C and a pressure of 3 MPa. Water saturated vapor exhausts from the turbin
    11·1 answer
  • Consider a 6-bit cyclic redundancy check (CRC) generator, G = 100101, and suppose that D = 1000100100. 1. What is the value of R
    9·1 answer
  • A 50-mm cube of the graphite fiber reinforced polymer matrix composite material is subjected to 125-kN uniformly distributed com
    14·1 answer
  • What is the mechanical advantage of a simple block and tackle with one rope?
    7·2 answers
  • If a client is shown the "Cadillac"
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!