Answer:
Her regular weekly pay is $62 and her annual salary is $3100.
Step-by-step explanation:
Given that her hourly wage=$15.50 / hour
As she works 40 hours per week, so her weekly pay = 15.50 x 40 = $62/ week.
If she works 50 weeks each year, so her yearly pay = 62x50=$3100 /year.
Hence, her regular weekly pay is $62 and her annual salary is $3100.
Hello,
I note (a,b,c) the result of a quarters, b dimes and c pennies:
2 solutions:
106=( 3, 3, 1)=( 1, 8, 1)
106=( 0, 0, 106) but : 100= 0*25+ 0*10+ 100
106=( 0, 1, 96) but : 100= 0*25+ 1*10+ 90
106=( 0, 2, 86) but : 100= 0*25+ 2*10+ 80
106=( 0, 3, 76) but : 100= 0*25+ 3*10+ 70
106=( 0, 4, 66) but : 100= 0*25+ 4*10+ 60
106=( 0, 5, 56) but : 100= 0*25+ 5*10+ 50
106=( 0, 6, 46) but : 100= 0*25+ 6*10+ 40
106=( 0, 7, 36) but : 100= 0*25+ 7*10+ 30
106=( 0, 8, 26) but : 100= 0*25+ 8*10+ 20
106=( 0, 9, 16) but : 100= 0*25+ 9*10+ 10
106=( 0, 10, 6) but : 100= 0*25+ 10*10+ 0
106=( 1, 0, 81) but : 100= 1*25+ 0*10+ 75
106=( 1, 1, 71) but : 100= 1*25+ 1*10+ 65
106=( 1, 2, 61) but : 100= 1*25+ 2*10+ 55
106=( 1, 3, 51) but : 100= 1*25+ 3*10+ 45
106=( 1, 4, 41) but : 100= 1*25+ 4*10+ 35
106=( 1, 5, 31) but : 100= 1*25+ 5*10+ 25
106=( 1, 6, 21) but : 100= 1*25+ 6*10+ 15
106=( 1, 7, 11) but : 100= 1*25+ 7*10+ 5
106=( 1, 8, 1) is good
106=( 2, 0, 56) but : 100= 2*25+ 0*10+ 50
106=( 2, 1, 46) but : 100= 2*25+ 1*10+ 40
106=( 2, 2, 36) but : 100= 2*25+ 2*10+ 30
106=( 2, 3, 26) but : 100= 2*25+ 3*10+ 20
106=( 2, 4, 16) but : 100= 2*25+ 4*10+ 10
106=( 2, 5, 6) but : 100= 2*25+ 5*10+ 0
106=( 3, 0, 31) but : 100= 3*25+ 0*10+ 25
106=( 3, 1, 21) but : 100= 3*25+ 1*10+ 15
106=( 3, 2, 11) but : 100= 3*25+ 2*10+ 5
106=( 3, 3, 1) is good
106=( 4, 0, 6) but : 100= 4*25+ 0*10+ 0
Answer:
A.) 36
Step-by-step explanation:
For a perfect square trinomial, a = 1 b = 2x c = x². For an example, (x+3)² = x² + 6x + 9.
For this trinomial, divide "b" by 2 to get 6. Square this number and you will have 36.
x² + 12x + 36
Answer:
They lose about 2.79% in purchasing power.
Step-by-step explanation:
Whenever you're dealing with purchasing power and inflation, you need to carefully define what the reference is for any changes you might be talking about. Here, we take <em>purchasing power at the beginning of the year</em> as the reference. Since we don't know when the 6% year occurred relative to the year in which the saving balance was $200,000, we choose to deal primarily with percentages, rather than dollar amounts.
Each day, the account value is multiplied by (1 + 0.03/365), so at the end of the year the value is multiplied by about
... (1 +0.03/365)^365 ≈ 1.03045326
Something that had a cost of 1 at the beginning of the year will have a cost of 1.06 at the end of the year. A savings account value of 1 at the beginning of the year would purchase one whole item. At the end of the year, the value of the savings account will purchase ...
... 1.03045326 / 1.06 ≈ 0.9721 . . . items
That is, the loss of purchasing power is about ...
... 1 - 0.9721 = 2.79%
_____
If the account value is $200,000 at the beginning of the year in question, then the purchasing power <em>normalized to what it was at the beginning of the year</em> is now $194,425.14, about $5,574.85 less.