1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anettt [7]
2 years ago
14

CAN SOMEONE HELP ME WITH WIYH THIS ?????

Mathematics
1 answer:
fomenos2 years ago
8 0

Answer:

x = 14

Angle B = 121°

Angle C is 59°

Step-by-step explanation:

First we'll find x, then we'll find Angle B (by substituting in x), then we'll find Angle C (bc Angle B and C are supplementary--that us, they add up to 180°)

10x-19 = 7x+23 subtract 7x

3x-19 = 23 add 19

3x = 42 divide by 3

x = 14

Angle B is 10x-19, and if x=14, then its 10(14)-19

Angle B is 140-19

which is 121°

Angle B = 121°

Angle B and Angle C add up to 180°

121° + c = 180°

c = 180-121

Angle C is 59°

You might be interested in
What is the value of a in the equation 3a + b = 54, when b = 9?
lions [1.4K]
3a + b = 54
Substitute b for 9
3a + 9 = 54
Subtract 9 to both sides
3a = 45
Divide 3 to both sides
a = 15
6 0
3 years ago
You are a telemarketer. You can expect that 2% of your calls will result in a sale. You make 50 calls before lunch.
Vesna [10]

Answer:

1

Step-by-step explanation

2% * 50= 1

6 0
2 years ago
Read 2 more answers
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
2 years ago
Read 2 more answers
What is the value of x?<br> Original 9 inches - 6 feet<br> Enlargement 12 inches - x feet
ololo11 [35]

Answer:

Step-by-step explanation:

5 0
3 years ago
Please help me with number 21. Explain to me how u got the answer
dalvyx [7]
1 meter is 100 centimeters so do 200÷10 what does that leavr you with ? 20
6 0
3 years ago
Read 2 more answers
Other questions:
  • 85% of k is 68. What is k?
    15·2 answers
  • PLEASE HELP 20 POINTS
    8·1 answer
  • Graph the solution of the inequality on the number line.
    11·1 answer
  • The perimeter of a rectangle with a width x and a length that is 3 times the width
    13·1 answer
  • For the function y = log(x - 2)+1, which of the following statements is
    6·1 answer
  • A student used the slope-intercept form to write the
    14·2 answers
  • At store A, apples are $3.99 for 5 apples. At store B, apples are $20 for 10 apples. Which is the better deal?​
    12·2 answers
  • A car drives 270 miles and can drive 13.5 miles per litre of diesel. Diesel
    10·2 answers
  • I need help rn help me and give an explanation
    5·1 answer
  • Find the perimeter of a square whose area is 441 sq km?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!