Molar mass of vitamin B1, C12H17N4OS = 265.34 g/ mol
Molar mass of vitamin B2, C17H20N4O6 = 376.37 g/ mol
Molar mass of vitamin B5, C9H17NO5 = 219.24 g/ mol
Molar mass of vitamin B6, C8H11NO3 = 169.18 g/ mol
Molar mass of vitamin B7, C10H16N2O3S = 244.31 g/ mol
Now,
Order of increasing molar mass = B6 < B5 < B7 < B1 < B2
Answer:24.31
Explanation:Contribution made by isotope of mass 23.99= 23.99×78.99=1894.97
Contribution made by isotope of mass 24.99=24.99×10.00=249.9
Contribution made by isotope of mass 25.98=25.98×11.01=286.04
Total contribution=1894.97+249.9+286.04=2430.91
Average mass=2430.91÷100
=24.31
Well the elements would be N, P, As, Sb, and Bi. Their electron configuration would be N= [He] 2s2 2p3, P= 1s2 2s2 2p6 3s2 3p3, As= [Ar] 3d10 4s2 4p3, Sb= Kr 4d10 5s2 5p3, and Bi= Xe 4f14 5d10 6s2 6p3.<span />
3.74×
3.74 ×
molecules of propane were in the erlenmeyer flask.
number of moles of propane can be calculated as moles of propane.
mass of propane = 0.274 g
molar mass of propane = 44.1
So this gives us the value of 6.21×
moles of propane
No one mole of propane As a 6.0-2 × 
so, 6.21 ×
× 6. 022 × 10^23
= 3.74 ×
Therefore, molecules of propane were in the erlenmeyer flask is found to be 3.74 ×
<h3>What is erlenmeyer flask?</h3>
- A laboratory flask with a flat bottom, a conical body, and a cylindrical neck is known as an Erlenmeyer flask, sometimes known as a conical flask or a titration flask.
- It bears the name Emil Erlenmeyer after the German chemist.
<h3>What purpose does an Erlenmeyer flask serve?</h3>
- Liquids are contained in Erlenmeyer flasks, which are also used for mixing, heating, chilling, incubating, filtering, storing, and other liquid-handling procedures.
- For titrations and boiling liquids, their sloped sides and small necks make it possible to whirl the contents without worrying about spills.
To learn more about calculating total molecules visit:
brainly.com/question/8933381
#SPJ4