Answer:
Explanation:
If the reaction is really exothermic (and it is) then the water would spatter all over the place. It would boil off if the container could hold it. It would also react according to the following reaction.
You are talking about a reaction like
2K + 2HOH = 2KOH + H2
Answer:
1.8 × 10² cal
Explanation:
When 0.32 g of a walnut is burned, the heat released is absorbed by water and used to raise its temperature. We can calculate this heat (Q) using the following expression.
Q = c × m × ΔT
where,
c: specific heat capacity of water
m: mass of water
ΔT: change in the temperature
Considering the density of water is 1 g/mL, 58.1 mL = 58.1 g.
Q = c × m × ΔT
Q = (1 cal/g.°C) × 58.1 g × 3.1°C
Q = 1.8 × 10² cal
The empirical formula of benzene is CH
Answer:
92.49 %
Explanation:
We first calculate the number of moles n of AgBr in 0.7127 g
n = m/M where M = molar mass of AgBr = 187.77 g/mol and m = mass of AgBr formed = 0.7127 g
n = m/M = 0.7127g/187.77 g/mol = 0.0038 mol
Since 1 mol of Bromide ion Br⁻ forms 1 mol AgBr, number of moles of Br⁻ formed = 0.0038 mol and
From n = m/M
m = nM . Where m = mass of Bromide ion precipitate and M = Molar mass of Bromine = 79.904 g/mol
m = 0.0038 mol × 79.904 g/mol = 0.3036 g
% Br in compound = m₁/m₂ × 100%
m₁ = mass of Br in compound = m = 0.3036 g (Since the same amount of Br in the compound is the same amount in the precipitate.)
m₂ = mass of compound = 0.3283 g
% Br in compound = m₁/m₂ × 100% = 0.3036/0.3283 × 100% = 0.9249 × 100% = 92.49 %