<h3>Answer:</h3>
53 fahrenheit
<h3>Explanation:</h3>
Temperature is a measure of thermal energy. It goes down when thermal energy decreases. Of your choices, the temperature lower than 62 °F is 53 °F.
The implications are for this reader in this line is that the atom is belonging to some kind of system and it is good belonging to that system.
Hope this helps. :)
- Shelly O
The equilibrium constant is 0.0022.
Explanation:
The values given in the problem is
ΔG° = 1.22 ×10⁵ J/mol
T = 2400 K.
R = 8.314 J mol⁻¹ K⁻¹
The Gibbs free energy should be minimum for a spontaneous reaction and equilibrium state of any reaction is spontaneous reaction. So on simplification, the thermodynamic properties of the equilibrium constant can be obtained as related to Gibbs free energy change at constant temperature.
The relation between Gibbs free energy change with equilibrium constant is ΔG° = -RT ln K
So, here K is the equilibrium constant. Now, substitute all the given values in the corresponding parameters of the above equation.
We get,



So, the equilibrium constant is 0.0022.
Answer:
2,3,6,1
2,3,6,1
Explanation:
The unbalanced reaction expression is given as:
AlBr₃ + K₂SO₄ → KBr + Al₂(SO₄)₃
We need to balanced this reaction equation. Our approach is a mathematical method where we assign variable a,b,c and d as the coefficients.
aAlBr₃ + bK₂SO₄ → cKBr + dAl₂(SO₄)₃
Conserving Al; a = 2d
Br: 3a = c
K: 2b = c
S: b = 3d
O: 4b = 12d
Let a = 1, c = 3, d =
b =
Multiply through by 2 to give;
a = 2, b = 3, c = 6 and d = 1
2AlBr₃ + 3K₂SO₄ → 6KBr + Al₂(SO₄)₃
Answer:
The answers are as given in the attachment
Explanation:
The application of the de brogile equation was used and appropriate substitution were made as shown in the attachment