From the ideal gas law, PV = nRT, we can rearrange the equation to solve for T given the other parameters.
T = PV/nR
where P = 0.878 atm, V = 1.20 L, n = 0.0470 moles, and R = 0.082057 L•atm/mol•K. Plugging in our values, we obtain the temperature in Kelvin:
T = (0.878 atm)(1.20 L)/(0.0470 mol)(0.082057 L•atm/mol•K)
T = 273 K
So, the second answer choice would be correct.
Answer:
125g × 1 mol/16 grams = 7.81 × avogadros #
Answer:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Explanation:
Hello,
In this case, for the equilibrium condition, the equilibrium constant is defined via the law of mass action, which states that the division between the concentrations of the products over the concentration of the reactants at equilibrium equals the equilibrium constant, for the given reaction:

The suitable equilibrium constant turns out:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Or in terms of the initial equilibrium constant:

Since the second reaction is a doubled version of the first one.
Best regards.
Answer:
Some of the chemicals used to preserve food and give it color are sodium nitrate, sodium benzoate, and propionate
Explanation: