Answer:
Metal
Explanation:
In chemistry, an alkali is a basic, ionic salt of an alkali metal or alkaline earth metal chemical element. An alkali also can be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0.
Ether
methoxypropane (methyl propyl ether)
The equation to calculate Density is Mass / Volume. You are given that the density is 5.45 and the mass is 65; 5.45 = 65 / v. So v = 65 / 5.45; v = 11.93 mL (or if you want your answer to consider significant figures, v = 12 mL).
Answer:
The timber companies removing all the trees from entire hillside when they are harvesting logs is a practice that could cause the following when it is time to plant in spring:
1. It could affect the quality of plant needed nutrients in the soil and beneficial microorganism population in the soil which could impact negatively the planting season.
2. Trees serves as protection of soil nutrients against wind erosions, so the soil nutrients would be affected.
The farmers tilling the soil means preparing the soil for a farming season as the following effect:
1. Helps control weed for the planting season.
2. This practice could further encourage soil erosion if not done well.
3. Tilling the soil could make leftover plants from the felling of trees mix well with the soil and also add nutrients to the soil when they decay.
<u>Answer:</u> The heat of hydrogenation of the reaction is coming out to be 234.2 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_{(product)}]-\sum [n\times \Delta H_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_{(C_4H_{10})})]-[(1\times \Delta H_{(C_4H_6)})+(2\times \Delta H_{(H_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_%7B10%7D%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_6%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_%7B%28H_2%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-2877.6))]-[(1\times (-2540.2))+(2\times (-285.8))]\\\\\Delta H_{rxn}=234.2J](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-2877.6%29%29%5D-%5B%281%5Ctimes%20%28-2540.2%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D234.2J)
Hence, the heat of hydrogenation of the reaction is coming out to be 234.2 kJ.