Answer:
B
Step-by-step explanation:
Answer:
common ratio: 1.155
rate of growth: 15.5 %
Step-by-step explanation:
The model for exponential growth of population P looks like:
where is the population at time "t",
is the initial (starting) population
is the common ratio,
and is the rate of growth
Therefore, in our case we can replace specific values in this expression (including population after 12 years, and initial population), and solve for the unknown common ratio and its related rate of growth:
This (1+r) is the common ratio, that we are asked to round to the nearest thousandth, so we use: 1.155
We are also asked to find the rate of increase (r), and to express it in percent form. Therefore we use the last equation shown above to solve for "r" and express tin percent form:
So, this number in percent form (and rounded to the nearest tenth as requested) is: 15.5 %
A coin has one of two outcomes: heads or tails.
Each has an equal probability of occurring, meaning that they each have a 50% chance to occur. (They need to add up to 100% because they include all the outcomes, divide that into two equal parts and...)
This is what we call theoretical probability. It's a guess as to how probability <em>should</em> work. Like in the experiment, it's not always going to be 50-50.
What <em>actually happens</em> is called experimental probability. This may vary slightly from theoretical probability because you can't predict probability with complete certainty, you can only say what is <em>most likely to happen</em>.
We want to find the probability of getting heads in our experiment so we can compare it to the theoretical outcome. To do this, we need to compare the number of heads to the total number of outcomes.
We have 63 heads, and a total of 150 coin flips.
That makes the probability of getting a heads 63/150.
The hard part is getting this ratio into a percent.
You can try simply dividing, but you should be able to notice something here.
SInce the top and the bottom of our fraction are both divisible by 3, we can <em>simiplify</em>.
63 ÷ 3 = 21
150 ÷ 3 = 50
So we could say that 63/150 = 21/50.
A percent is basically a fraction out of 100.
Just like you can divide the parts of a ratio by the same number and it will stay the same, you can also multiply. To get the fraction out of 100, let's multiply by 2.
(since 50 × 2 = 100)
21 × 2 = 42
50 × 2 = 100
21/50 = 42/100 = 42%
Comparing our experimental probability to the theoretical one...it is 8% lower.