Answer:
Option b.) Potassium ion, is written correctly.
Explanation:
Hope this helps! :)
Here we have to choose the right option which tells the moles of CaCl₂ will react with 6.2 moles of AgNO₃ in the reaction
2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂
6.2 moles of silver nitrate (AgNO₃) will react with B. 3.1 moles of calcium chloride (CaCl₂).
From the reaction: 2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂
Thus 2 moles of AgNO₃ reacts with 1 mole of CaCl₂
Henceforth, 6.2 moles of AgNO₃ reacts with
= 3.1 moles of CaCl₂.
1 mole of CaCl₂ reacts with 2 moles of AgNO₃. Thus-
A. 2.2 moles of CaCl₂ will react with 2.2×2 = 4.4 moles of AgNO₃.
C. 6.2 moles of CaCl₂ will reacts with 6.2×2 = 12.4 moles of AgNO₃.
D. 12.4 moles of CaCl₂ will reacts with 12.4 × 2 = 24.8 moles of AgNO₃
Thus the right answer is 6.2 moles of AgNO₃ will react with 3.1 moles of CaCl₂.
Answer:
Actual yield: 86.5 grams.
Explanation:
How many moles of formula units in 95 grams of calcium carbonate
?
Refer to a modern periodic table for relative atomic mass data:
- Ca: 40.078;
- C: 12.011;
- O: 15.999.
Formula mass of
:
.
.
How many moles of
will be produced?
The coefficient in front of
in the chemical equation is the same as that in front of
. That is:
.
.
What's the theoretical yield of calcium chloride? In other words, what's the mass of
of
?
Again, refer to a periodic table for relative atomic data:
.
.
What's the actual yield of calcium chloride?
.
.
Answer:
the energy of the third excited rotational state 
Explanation:
Given that :
hydrogen chloride (HCl) molecule has an intermolecular separation of 127 pm
Assume the atomic isotopes that make up the molecule are hydrogen-1 (protium) and chlorine-35.
Thus; the reduced mass μ = 
μ = 
μ = 
∵ 1 μ = 1.66 × 10⁻²⁷ kg
μ = 
μ = 1.6139 × 10⁻²⁷ kg

The rotational level Energy can be expressed by the equation:

where ;
J = 3 ( i.e third excited state) &




We know that :
1 J = 


