Answer:
3139542g
Explanation:
That's because if you talk about
4.5
moles of sodium fluoride, you would get a really absurd number of grams.
Answer:
Groups 14, 15, and 16 have 2,3, and 4 electrons in the p sublevel (p sublevel has 3 "spaces" AKA orbitals), because Hunds says one in each orbital before doubling up if you had 2 electrons, group 14, they would both be in the first orbital, with 3 electrons, group 15, two in the first orbital one in the 2nd none in the 3rd. With 4 electrons, group 16, then you would have 2 in the first 2 orbitals and NONE in the 3rd.
Explanation:
If you are in group 13 you only have 1 electron so it can only be in one orbital. with group 17, you have 5 electrons, so 2 in the first 2 in the second and 1 in the 3rd, correct for Hunds rule anyway. Noble gasses, group 18, have 6 elecctrons, so every orbital is full any way you look at it.
Answer:
A) An ionic bond is much stronger than most covalent bonds.
Explanation:
D) Ionic compounds have high melting points causing them to be solid at room temperature, and conduct electricity when dissolved in water. Covalent compounds have low melting points and many are liquids or gases at room temperature.
C) An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal. A covalent bond involves a pair of electrons being shared between atoms.
A) Covalent bonds are stronger if you compare with ionic molecules, because their molecular orbital overlap is bigger. However, ionic molecules form lattices, thus the energy to break this lattice bond is stronger hence the ionic bond is stronger.
T=20 min
m₀=200 g
t=60 min
the mass of element through time t is:
m=m₀*2^(-t/T)
m=200*2^(-60/20)=25 g
25 grams of element will be left after 60 minutes
Solid- particles are packed tightly together so they don’t move much
Liquid- particles are still close together but move freely
Gas- particles are neither close together nor fixed in place