To solve this problem, we can simply calculate for the
dose by multiplying the volume of solution containing Selenium 75 and the
activity of the Selenium 75. That is:
dose = 4.1 mL * (45 μCi/mL)
dose = 184.5 μCi
<u>Answer:</u> 2.00 atm
<u>Explanation:</u>
The gas is kept under the same temperature in this problem. Assuming the amount of gas is constant, we can apply the Boyle's law.
The Boyle's law equation,
P₁V₁ = P₂V ₂
Plug in the values,
1.00 atm x 4.0 L = P₂ x 2.0 L
Simplify,
4.00 atm L = 2 P₂ L
Now flip the equation,
2 P₂ L = 4.00 atm L
Dividing both sides by 2 we get,
P₂ = 2.00 atm
From electronic configuration valence electron of Nitrogen is 5, oxygen 6x2 which 12 since it involve two molecules , that of is frulorine is 7, and that No2F is 24 which is gotten form adding (5,12,7 ).All resonance structure are as follows
F
.. I ..
: O : N :O:
..
OR : F:
I
N .. : F:
/ \ or I
.. .. N
:O : :O: / / \\
/ / \\
:O : : O:
Answer:
A. When two aqueous solutions are mixed, a precipitate is formed.
Explanation:
The precipitate (a solid substance that falls from the liquid) is the result of a chemical reaction taking place between the liquids.
The other three answer choices are indicative of physical changes (temperature change, phase change, color change).
Well it’s the first answer couches