<span>Let's </span>assume that water vapor has ideal gas
behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹) and T is temperature in Kelvin.<span>
<span>
</span>P = 1 atm = 101325 Pa (standard pressure)
V = 13.97 L = 13.97 x 10</span>⁻³ m³<span>
n = ?
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 0 °C = 273 K (standard temperature)
<span>
By substitution,
</span>101325 Pa x 13.97x 10</span>⁻³
m³ = n x 8.314 J mol⁻¹ K⁻¹ x 273 K<span>
n = 0.624 mol
<span>
Hence, the moles of water vapor at STP is 0.624 mol.
According to the </span></span>Avogadro's constant, 1 mole of substance has 6.022 × 10²³ particles.
<span>
Hence, number of atoms in water vapor = 0.624 mol x </span>6.022 × 10²³ mol⁻¹
<span> = 3.758 x 10</span>²³<span>
</span>
Balance the equation first:
2 Fe+6 HNO3→2 Fe(NO3)3+3H2
Then calculate mass of Iron :
4.5×3.0×3.5 cm3(1 mL1 cm3)(7.87 g Fe1 ml)=371.86 g Fe
Now use Stoichiometry:
371.86 g Fe×(1 mol Fe55.85 g Fe)×(6 mol HNO32 mol Fe)=19.97 mol HNO3
Convert moles of nitric acid to grams
19.97 mol HNO3×(63.01 g HNO31 mol HNO3)=1258.3 g HNO3
Answer:
During photosynthesis, plants absorb carbon dioxide and sunlight to create fuel—glucose and other sugars—for building plant structures. This process forms the foundation of the fast (biological) carbon cycle.
The Slow Carbon Cycle. ... Atmospheric carbon combines with water to form a weak acid—carbonic acid—that falls to the surface in rain. The acid dissolves rocks—a process called chemical weathering—and releases calcium, magnesium, potassium, or sodium ions.
Animals use oxygen to convert this food into energy they can use, and to maintain a steady supply of carbon atoms that are necessary for building any animal cells. Respiration also returns carbon dioxide back to the atmosphere as a waste product, where plants can reabsorb it in the process of photosynthesis. hope I helped.