Because there are so many different values of numbers, it would be impractical to use 1Ω, 2Ω, 3Ω... etc... Using colored bands helps make reading it a little easier to the trained eye. There are hundreds of thousands, if not tens of millions of different resistors would need to exist to cover every value. So you just use something called "preferred values" with their resistance values posted on them instead.
The pH of a solution at 25. 0 °C that contains 2. 95 × 10^-12 m hydronium ions is 13.5.
<h3>What is pH? </h3>
pH is defined as the concentration of the hydrogen bond which is released or gained by the species in the solution which depicts the acidity and basicity of the solution.
<h3>What is pOH? </h3>
pOH is defined as the concentration of the hydronium ion present in solution.
pOH value is inversely proportional to the value of pH.
pH value increases, pOH value decreases and vice versa.
Given,
Total H+ ions = 2.95 ×10^(-12)M
<h3>Calculation of pH</h3>
pH = -log[H+]
By substituting the value of H+ ion in given equation
= log(2.95× 10^(-12) )
= 13.5
Thus we find that the pH of a solution at 25. 0 °C that contains 2. 95 × 10^-12 m hydronium ions is 13.5.
learn more about pH:
brainly.com/question/12942138
#SPJ4
Answer: 2 moles
Explanation:
STP is Standard Temperature and Pressure. That means the pressure is 1.00 atm and the temperature is 273K. Since the oxygen is placed in the same container, we can use Ideal Gas Law to figure out what container the CO₂ used.
Ideal Gas Law: PV=nRT
P=1.00 atm
n=moles
R=0.08206 Latm/Kmol
T=273K
CO₂



Since we know that CO₂ has a 44.8 L container, we can use that to find the moles of oxygen.



There are 2 mol of oxygen.