Answer : The enthalpy change of reaction is 206.9 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given final reaction is,

The intermediate balanced chemical reaction will be,
(1)

(2)

First we will reverse the reaction 1 and 2 then adding both the equation, we get :
(1)

(2)

The expression for final enthalpy is,



Therefore, the enthalpy change of reaction is 206.9 kJ
It’s an example of dissolving
When adjusted for any changes in δh and δs with temperature, the standard free energy change δg∘t at 2400 k is equal to 1.22×105j/mol, then the equilibrium constant at 2400 k is 2.21×10−3. The answer to the statement is 2.21×10−3.
The density of the solid object will be 2.63 g/mL
<h3>What is density?</h3>
Density of objects = mass/volume.
Recall that an object will always displace its own volume when placed in a liquid.
Volume of the solid object = Cylinder reading after immersing the object in the water - cylinder reading before immersing the object in the water.
= 48.1 - 20.4
= 27.8 mL
Mass of the solid object = 73.05 g
Density of the object = 73.05/27.8
= 2.63 g/mL
More on density can be found here: brainly.com/question/15164682
#SPJ1