<span>n this order, Ď=1.8gmL, cm=0.5, and mole fraction = 0.9
First, let's start with wt%, which is the symbol for weight percent. 98wt% means that for every 100g of solution, 98g represent sulphuric acid, H2SO4.
We know that 1dm3=1L, so H2SO4's molarity is
C=nV=18.0moles1.0L=18M
In order to determine sulphuric acid solution's density, we need to find its mass; H2SO4's molar mass is 98.0gmol, so
18.0moles1Lâ‹…98.0g1mole=1764g1L
Since we've determined that we have 1764g of H2SO4 in 1L, we'll use the wt% to determine the mass of the solution
98.0wt%=98g.H2SO4100.0g.solution=1764gmasssolution→
masssolution=1764gâ‹…100.0g98g=1800g
Therefore, 1L of 98wt% H2SO4 solution will have a density of
Ď=mV=1800g1.0â‹…103mL=1.8gmL
H2SO4's molality, which is defined as the number of moles of solute divided by the mass in kg of the solvent; assuming the solvent is water, this will turn out to be
cm=nH2SO4masssolvent=18moles(1800â’1764)â‹…10â’3kg=0.5m
Since mole fraction is defined as the number of moles of one substance divided by the total number of moles in the solution, and knowing the water's molar mass is 18gmol, we could determine that
100g.solutionâ‹…98g100gâ‹…1mole98g=1 mole H2SO4
100g.solutionâ‹…(100â’98)g100gâ‹…1mole18g=0.11 moles H2O
So, H2SO4's mole fraction is
molefractionH2SO4=11+0.11=0.9</span>
1) using your senses!
2)infering
3)predicting
4)making models
hope this helped XD
Answer:
A.
Explanation:
Water was added to the reaction after the completion of the reaction so as to lower the solubility if the product in the solution therefore, the product can be precipitated out. On adding water the reaction moves in forward direction and more product is formed. (By Le Chatelier's principle). Thus, the precipitation occurs. Hence, option A is correct.
<u>Answer:</u> The amount of heat required to warm given amount of water is 470.9 kJ
<u>Explanation:</u>
To calculate the mass of water, we use the equation:

Density of water = 1 g/mL
Volume of water = 1.50 L = 1500 mL (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

To calculate the heat absorbed by the water, we use the equation:

where,
q = heat absorbed
m = mass of water = 1500 g
c = heat capacity of water = 4.186 J/g°C
= change in temperature = 
Putting values in above equation, we get:

Hence, the amount of heat required to warm given amount of water is 470.9 kJ