Answer:
The dissociation constant of phenol from given information is
.
Explanation:
The measured pH of the solution = 5.153

Initially c
At eq'm c-x x x
The expression of dissociation constant is given as:
![K_a=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OOH%5D%7D)
Concentration of phenoxide ions and hydrogen ions are equal to x.
![pH=-\log[x]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5Bx%5D)
![5.153=-\log[x]](https://tex.z-dn.net/?f=5.153%3D-%5Clog%5Bx%5D)



The dissociation constant of phenol from given information is
.
Answer:
A substance that can conduct electricity in solution
A "FORCE" is required to cause acceleration or cause an object to move.
Bed frame is metal so it is able to be sturdy and hold up
cleaning agents are mettaliods some contain boron to control strength of bleach , and removing stains
plotting soil is non metal it is rich with nitrogen which is good for plants
5.367 ml of the concentrated acid must be added to obtain a total volume of 100 ml of the dilute solution.
Dilution is defined as the process in which the concentration of a sample is decreased by adding more solvent. The dilution formula is given below.
C₁V₁ = C₂V₂
where C₁ = initial concentration of sample = 3.00 m
V₁ = initial volume of sample
C₂ = final concentration after dilution = 0.161 m
V₂ = total final volume after dilution = 100 ml
Plug in the values to the formula and solve for the volume of the concentrated acid that must be added.
C₁V₁ = C₂V₂
3.00 m (V₁) = 0.161 m (100 ml)
V₁ = 5.367 ml
Learn more about dilution here: brainly.com/question/1615979
#SPJ4