1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stealth61 [152]
3 years ago
5

Carter Motor Company claims that its new sedan, the Libra, will average better than 26 miles per gallon in the city. Use μ, the

true average mileage of the Libra.
Mathematics
1 answer:
Aleonysh [2.5K]3 years ago
7 0

Answer:

The true average mileage of the Libra  Using Null hypothesis is as ;

H0:μ≤26

(Ha):μ >26

Step-by-step explanation:

Given:

Libra, will average better than 26 miles per gallon in the city

To Find:

Average mileage of the Libra.

Solution:

This problem is related to the null hypothesis  and alternate hypothesis.

i.e Null Hypothesis is the statement which is true and statement which contradictory is called alternate hypothesis.

<em>“reject H0” if the sample information favors the alternative hypothesis. </em>

<em>“do not reject H0” / “decline to reject H0” if the sample information is insufficient to reject the null hypothesis</em>

So given that condition is libra will have average better than 26

So it will include 26 and above values .

i.e. True  condition is called as null hypothesis (H0)

so true average will be greater than 26

So H0:μ≤26

And the Alternate hypothesis will be the contradictory to true condition

(Ha):μ >26 .

You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Anyone know the answer?
Stolb23 [73]

Answer:

y-intercept = 1

Step-by-step explanation:

Here 1 grids crossing means increasing or decreasing by 1 grid. Here we are seeing the line crosses 1 grid above 0. So its positive 1. From here we find the y intercept is +1. Line crosses at coordinate ( 0 , 1 )

8 0
2 years ago
Read 2 more answers
Multiply the expression (1/3 m-n)^2​
nataly862011 [7]

Answer:

{(

6 0
2 years ago
Read 2 more answers
Please I need help asap.
sukhopar [10]

Answer:

i cant see the question really well,can you plz send another copy

Step-by-step explanation:

8 0
3 years ago
Help me, plsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
I am Lyosha [343]

Answer:

70/29 or 2 12/29

Step-by-step explanation:

5 0
2 years ago
Other questions:
  • Geometry(please help on 1 and 2)
    9·1 answer
  • The GCF of 14 and a number is 7. Which of the following could be the number
    11·2 answers
  • What term describes the set of all possible input values for a function
    8·1 answer
  • How can estimation help me to find the area of a rectangle or square
    13·1 answer
  • The student scores on mrs fredericks mathematics test are shown on the stem and leaf plot below
    10·1 answer
  • It is 42 1/2 miles from Eaton to Baxter, and 37 4/5 miles from Baxter to Wellington.How far is it from Eaton to Wellington, if y
    9·2 answers
  • What’s the value of x???
    8·1 answer
  • Two pounds of dried cranberries cost $5.04, 3 pounds of dried cranberries cost $7.56, and 7 pounds of dried cranberries cost $17
    9·1 answer
  • Write the ratio for tan A. ​
    15·1 answer
  • What is the equation of a line that has slope = -4 and y-intercept is (0, 3)?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!