Answer:
Explanation:
By conservation of energy, speed of the ball going up = speed of ball coming down with the ball stops at the top.
Because the gravity acceleration is constant, by symmetry, half of total time, 6/2 = 3s, is for going up and the last 3s for coming down.
Consider the last 3s when the ball drops from top to bottom, the initial velocity = 0 and acceleration = 10m/s^2
distance traveled = initial velocity * time + 1/2 * acceleration * time^2
= 0*3 + 1/2*10*3^2
= 5*9
= 45m
So maximum height of the ball is 45m.
(1) The skull consists of twenty-two bones.
Answer:

Explanation:
We first identify the elements of this simple harmonic motion:
The amplitude A is 8.8cm, because it's the maximum distance the mass can go away from the equilibrium point. In meters, it is equivalent to 0.088m.
The angular frequency ω can be calculated with the formula:

Where k is the spring constant and m is the mass of the particle.
Now, since the spring starts stretched at its maximum, the appropriate function to use is the positive cosine in the equation of simple harmonic motion:

Finally, the equation of the motion of the system is:
or

Answer:
C. Angular Separation
Explanation:
The term angular distance (or separation) is technically synonymous with angle itself, but is meant to suggest the (often vast, unknown, or irrelevant) linear distance between these objects (for instance, stars as observed from Earth).
Answer:
When balloon moves in the downward direction two forces acts on it.
i) Force exerted by air in the upward direction
ii) Weight
According to newton’s second law of motion:
Sum of forces = Ma
W – F = Ma
Mg – F = Ma …….. (i)
when some of the mass m is dropped and balloon is moving in upward direction with acceleration a/2 then,
F – W = (M-m)a/2
F – (M-m)g = (M-m)a/2
F – Mg + mg = Ma/2 – ma/2 ….. (ii)
Adding equation (i) and (ii)
mg = M(3a/2) – ma/2
m(g + a/2) = M(3a/2)
m = M(3a/2)/(g + a/2)