Answer:
h=18.05 cm
Explanation:
Given that
m= 25 kg
K= 1300 N/m
x=26.4 cm
θ= 19.5 ∘
When the block just leave the spring then the speed of block = v m/s
From energy conservation



By putting the values


v=1.9 m/s
When block reach at the maximum height(h) position then the final speed of the block will be zero.
We know that

By putting the values

h=0.1805 m
h=18.05 cm
8.0 m/s if there is no air resistance. (B)
Less if there IS any air resistance.
Answer:
220 A
Explanation:
The magnetic force on the floating rod due to the rod held close to the ground is F = BI₁L where B = magnetic field due to rod held close the ground = μ₀I₂/2πd where μ₀ = permeability of free space = 4π × 10⁻⁷ H/m, I₂ = current in rod close to ground and d = distance between both rods = 11 mm = 0.011 m. Also, I₁ = current in floating rod and L = length of rod = 1.1 m.
So, F = BI₁L
F = (μ₀I₂/2πd)I₁L
F = μ₀I₁I₂L/2πd
Given that the current in the rods are the same, I₁ = I₂ = I
So,
F = μ₀I²L/2πd
Now, the magnetic force on the floating rod equals its weight , W = mg where m = mass of rod = 0.10kg and g = acceleration due to gravity = 9.8 m/s²
So, F = W
μ₀I²L/2πd = mg
making I subject of the formula, we have
I² = 2πdmg/μ₀L
I = √(2πdmg/μ₀L)
substituting the values of the variables into the equation, we have
I = √(2π × 0.011 m × 0.1 kg × 9.8 m/s²/[4π × 10⁻⁷ H/m × 1.1 m])
I = √(0.01078 kgm²/s²/[2 × 10⁻⁷ H/m × 1.1 m])
I = √(0.01078 kgm²/s²/[2.2 × 10⁻⁷ H])
I = √(0.0049 × 10⁷kgm²/s²H)
I = √(0.049 × 10⁶kgm²/s²H)
I = 0.22 × 10³ A
I = 220 A
A beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies. Frequency beat is equal to,

The reference frequency in our case would be 392Hz, and since there is the possibility of the upper and lower range for the amount of beats per second that the two possible frequencies are heard would be


Therefore the two possible frequencies the piano wire is vibrating at, would be 396Hz and 388Hz