Answer:
The air resistance on the skydiver is 68.6 N
Explanation:
When the skydiver is falling down, there are two forces acting on him:
- The force of gravity, of magnitude
, in the downward direction (where m is the mass of the skydiver and g is the acceleration due to gravity)
- The air resistance,
, in the upward direction
So the net force on the skydiver is:

where
m = 7.0 kg is the mass

According to Newton's second law of motion, the net force on a body is equal to the product between its mass and its acceleration (a):

In this problem, however, the skydiver is moving with constant velocity, so his acceleration is zero:

Therefore the net force is zero:

And so, we have:

And so we can find the magnitude of the air resistance, which is equal to the force of gravity:

The answer is Fuse, the Fuse has a low melting point
Answer:
The free-body diagram of the cannonball is found in the attachment below
<em>Note The question is incomplete. The complete question is as follows:</em>
<em>A cannonball has just been shot out of a cannon aimed 45∘ above the horizontal rightward direction. Drag forces cannot be neglected.</em>
<em>Draw the free-body diagram of the cannonball.</em>
Explanation:
Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.
In order to construct free-body diagrams, it is important to know the various types of forces acting on the object in that situation. Then, the direction in which each of the forces is acting is determined. Finally the given object is drawn using any given representation, usually a box, and the direction of action of the forces are represented using arrows.
In the given situation of a cannonball which has just been shot out of a cannon aimed 45∘ above the horizontal rightward direction., the forces acting on it are:
F = force exerted by the cannon acting in the direction of angle of projection
Fdrag = drag force. The drag force acts in a direction opposite to the force exerted by the cannon
Fw = weight of the cannonball acting in a downward direction
The free body diagram is as shown in the attachment below.
The Vapor Pressure of water increases by 5.1%. when the temperature increases by 1 °c from 14°c to 15°c.
The vapor pressure of a liquid, sometimes referred to as the equilibrium pressure of a vapor above its liquid, is the pressure of the vapor produced by the evaporation of a fluid (or solid) over a sample of the liquid (or solid) in such a closed container (or solid).
Vapor pressure is the term for the force that is produced as liquids evaporate. Three factors commonly have an effect on a vapor press: surface area, intermolecular forces, and temperature. The vapor pressures of molecules change with temperature.
To know more about Vapor Pressure visit : brainly.com/question/14718830
#SPJ4