Answer:
7.888m
Explanation:
Given:
frequency 'f'= 90Hz
velocity of the sound 'v' = 340 m /sec
The wavelength of the wave is given by,
λ= v/f => 340/90
λ= 3.777m
The destructive interference condition is givn by
Δd=
λ
where, m=0,1,2,3,..
m=0, for minimum destructive interference
Δd=
x 3.777
Δd=1.888
Therefore, the required distance is
=
+ Δd => 6 + 1.888
= 7.888m
Thus, So the speaker should be placed at 7.888 m
Answer: 
Energy is directly proportional to the frequency.
The energy of a photon is given by:

Where, E is the energy and
is the frequency.
Frequency of the radio wave is given:


Multiply the above two:
Energy,

Hence, the energy of each photon of radio wave having frequency
is 
When you climb, earth exerts gravitational force on pack in downward direction(pointing towards the center of earth).
In order to climb, you need to work against work done by gravity on the pack.
Hence work done by you = work done by gravity on pack
= Force x displacement = 70 x 30 = 2100 J.
Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C