688,747,536 ways in which the people can take the seats.
<h3>
</h3><h3>
How many ways are there for everyone to do this so that at the end of the move, each seat is taken by exactly one person?</h3>
There is a 2 by 10 rectangular greed of seats with people. so there are 2 rows of 10 seats.
When the whistle blows, each person needs to change to an orthogonally adjacent seat.
(This means that the person can go to the seat in front, or the seats in the sides).
This means that, unless for the 4 ends that will have only two options, all the other people (the remaining 16) have 3 options to choose where to sit.
Now, if we take the options that each seat has, and we take the product, we will get:
P = (2)^4*(3)^16 = 688,747,536 ways in which the people can take the seats.
If you want to learn more about combinations:
brainly.com/question/11732255
#SPJ!
3% is the same as 0.03
Therefore, 662/3% = 662/0.03
Answer:
Start
A2
B2
B1
C1
C2
D2
D3
D4
C4
END
Step-by-step explanation:
Start (A3)
x is equal to 141 because they are alternate interior angles.
A2. x is equal to 39 because they are corresponding angles.
B2. x would be supplementary to 41 because the angle that x supplements is corresponding to 41.
41 + x = 180 due to the linear pair postulate. Therefore, x = 139.
B1. x would be supplementary to 82 because they are consecutive exterior angles.
82 + x = 180 due to the linear pair postulate. Therefore, x = 98.
C1. x = 102 due to the vertical angles theorem.
C2. x would be supplementary to 130 because the angle that x supplements is equal to 130 (Alternate Exterior Angles).
130 + x = 180, x = 50.
D2. x = 74, corresponding angles.
D3. x = 83, corresponding angles.
D4. x = 95, corresponding
C4. x is supplementary to 18 because of the consecutive interior angles theorem.
x = 162
END
A is 9 3/4 hours. 2/4 equals a half so 1/2 +1/4 equals 3/4