Answer:
decreases
Explanation:
Remeber:
There is always inverse relation between frequency and wavelength.
So if one of them increases, other decreases and vice-versa.
f ∝ 1 / λ
I believe it is, since the heat causes the water to evaporate and cause condensation,
Answer:
196
Explanation:
subtract 24 from 220 to get your answer.
Answer:
As you may know, each element has a "fixed" number of protons and electrons.
These electrons live in elliptical orbits around the nucleus, called valence levels or energy levels.
We know that as further away are the orbits from the nucleus, the more energy has the electrons in it. (And those energies are fixed)
Now, when an electron jumps from a level to another, there is also a jump in energy, and that jump depends only on the levels, then the jump in energy is fixed.
Particularly, when an electron jumps from a more energetic level to a less energetic one, that change in energy must be compensated in some way, and that way is by radiating a photon whose energy is exactly the same as the energy of the jump.
And the energy of a photon is related to the wavelength of the photon, then we can conclude that for a given element, the possible jumps of energy levels are known, meaning that the possible "jumps in energy" are known, which means that the wavelengths of the radiated photons also are known. Then by looking at the colors of the bands (whose depend on the wavelength of the radiated photons) we can know almost exactly what elements are radiating them.
Answer:
3 photons
Explanation:
The energy of a photon E can be calculated using this formula:

Where
corresponds to Plank constant (6.626070x10^-34Js),
is the speed of light in the vacuum (299792458m/s) and
is the wavelength of the photon(in this case 800nm).

Tranform the units

The band Gap is 4eV, divide the band gap between the energy of the photon:

Rounding to the next integrer: 3.
Three photons are the minimum to equal or exceed the band gap.