Let n be the total number of puffs. Now we can write:
![n=\frac{5}{9}n+\frac{1}{3}n+18](https://tex.z-dn.net/?f=n%3D%5Cfrac%7B5%7D%7B9%7Dn%2B%5Cfrac%7B1%7D%7B3%7Dn%2B18)
Adding the fractional value of n, we get:
![n=\frac{5+3}{9}n+18](https://tex.z-dn.net/?f=n%3D%5Cfrac%7B5%2B3%7D%7B9%7Dn%2B18)
Simplifying and rearranging gives us:
![n-\frac{8}{9}n=18](https://tex.z-dn.net/?f=n-%5Cfrac%7B8%7D%7B9%7Dn%3D18)
Therefore we can simplify to get:
![\frac{1}{9}n=18](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B9%7Dn%3D18)
and finally
![n=18\times9=?](https://tex.z-dn.net/?f=n%3D18%5Ctimes9%3D%3F)
The fraction of the puff that are tuna is found from:
Answer:
S = {0,2,3,4}
P(X=0) = 0.573 , P(X=2) = 0.401 , P(x=3) = 0.025, P(X=4) = 0.001
Mean = 0.879
Standard Deviation = 1.033
Step-by-step explanation:
Let the number of people having same birth month be = x
The number of ways of distributing the birthdays of the 4 men = (12*12*12*12)
The number of ways of distributing their birthdays = 12⁴
The sample space, S = { 0,2,3,4} (since 1 person cannot share birthday with himself)
P(X = 0) = ![\frac{12P4}{12^{4} }](https://tex.z-dn.net/?f=%5Cfrac%7B12P4%7D%7B12%5E%7B4%7D%20%7D)
P(X=0) = 0.573
P(X=2) = P(2 months are common) P(1 month is common, 1 month is not common)
P(X=2) = ![\frac{3C2 * 12P2}{12^{4} } + \frac{4C2 * 12P3}{12^{4} }](https://tex.z-dn.net/?f=%5Cfrac%7B3C2%20%2A%2012P2%7D%7B12%5E%7B4%7D%20%7D%20%2B%20%5Cfrac%7B4C2%20%2A%2012P3%7D%7B12%5E%7B4%7D%20%7D)
P(X=2) = 0.401
P(X=3) = ![\frac{4C3 * 12P2}{12^{4} }](https://tex.z-dn.net/?f=%5Cfrac%7B4C3%20%2A%2012P2%7D%7B12%5E%7B4%7D%20%7D)
P(x=3) = 0.025
P(X=4) = ![\frac{12}{12^{4} }](https://tex.z-dn.net/?f=%5Cfrac%7B12%7D%7B12%5E%7B4%7D%20%7D)
P(X=4) = 0.001
Mean, ![\mu = \sum xP(x)](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%5Csum%20xP%28x%29)
![\mu = (0*0.573) + (2*0.401) + (3*0.025) + (4*0.001)\\\mu = 0.879](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%280%2A0.573%29%20%2B%20%282%2A0.401%29%20%2B%20%283%2A0.025%29%20%2B%20%284%2A0.001%29%5C%5C%5Cmu%20%3D%200.879)
Standard deviation, ![SD = \sqrt{\sum x^{2} P(x) - \mu^{2}} \\SD =\sqrt{ [ (0^{2} * 0.573) + (2^{2} * 0.401) + (3^{2} * 0.025) + (4^{2} * 0.001)] - 0.879^{2}}](https://tex.z-dn.net/?f=SD%20%3D%20%5Csqrt%7B%5Csum%20x%5E%7B2%7D%20P%28x%29%20-%20%5Cmu%5E%7B2%7D%7D%20%20%5C%5CSD%20%3D%5Csqrt%7B%20%5B%20%280%5E%7B2%7D%20%2A%200.573%29%20%2B%20%282%5E%7B2%7D%20%20%2A%200.401%29%20%2B%20%283%5E%7B2%7D%20%2A%200.025%29%20%2B%20%284%5E%7B2%7D%20%2A%200.001%29%5D%20-%200.879%5E%7B2%7D%7D)
SD = 1.033
Answer:
Hi, there the answer is (4,2)
Step-by-step explanation:
The reason is that 4 is the y-axis and 2 is the x-axis and
the rule is x is first then y
The correct format for writing this it is supposed to be (2,4).
Therefore, your answer will (4,2)
Number 5 is 42.2
.............
Answer:
8x² + 3x - 8
Step-by-step explanation:
(f + g)(x) = f(x) + g(x)
f(x) + g(x) = 6x² + 3x + 1 + 2x² - 9 = 8x² + 3x - 8