I WOULD SAY d. ALL OF ABOVE
The answer to this question is:
D. balanced.
Good Luck!
Answer:
86.2 g/mol
Explanation:
Before you can find the molar mass, you first need to calculate the number of moles of the gas. To find this value, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (mmHg)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 L*mmHg/mol*K)
-----> T = temperature (K)
After you convert the volume from mL to L and the temperature from Celsius to Kelvin, you can use the equation to find the moles.
P = 760 mmHg R = 62.36 L*mmHg/mol*K
V = 250 mL / 1,000 = 0.250 L T = 20 °C + 273.15 = 293.15 K
n = ? moles
PV = nRT
(760 mmHg)(0.250 L) = n(62.36 L*mmHg/mol*K)(293.15 K)
190 = n(18280.834)
0.0104 = n
The molar mass represents the mass (g) of the gas per every 1 mole. Since you have been given a mass and mole value, you can set up a proportion to determine the molar mass.
<----- Proportion
<----- Cross-multiply
<----- Divide both sides by 0.0104
Answer : The oxidizing element is N and reducing element is O.
is act as an oxidizing agent as well as reducing agent.
Explanation :
An Oxidizing agent is the agent which has ability to oxidize other or a higher in oxidation number.
Reducing agent is the agent which has ability to reduce other or lower in oxidation number.
The given reaction is :

act as an oxidizing agent.
The oxidation number of N in
is calculated as:
(+1)+(x)+3(-2) = 0
x = +5
And the oxidation number of N in
is calculated as:
(+1)+(x)+2(-2) = 0
x = +3
From the oxidation number method, we conclude that the oxidation number reduced this means
itself get reduced to
and it can act as an oxidizing agent.
act as a reducing agent.

The oxidation number of O in
is calculated as:
(+1)+(+5)+3(x) = 0
x = -2
The oxidation number of O in
is Zero (o).
Now, we conclude that the oxidation number increases this means
itself get oxidized to
and it can act as reducing agent.