1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bad White [126]
2 years ago
12

98546 dividido para46

Mathematics
2 answers:
IRINA_888 [86]2 years ago
5 0

Answer:

2142.30435

Step-by-step explanation:

ollegr [7]2 years ago
5 0

The answer is 2142 and leaves remainder

You might be interested in
48+49+50+51+...112+113
Stels [109]

Answer: 423

Step-by-step explanation:

4 0
3 years ago
Mila has biked 10 miles in 1.5 hours if Mila continues at the same rate,how many miles will she bike in 3 and a 1/2 hours?
Viefleur [7K]

Mike biked 10 miles in 1.5 hours. Mila bikes at the same rate too.

Therefore, she will bike x miles in 3.5 hours

(10/1.5) = (x/3.5)

You cross multiply

1.5x = 10 x 3.5

1.5x = 35

x = 35/1.5

x = 23 miles (approximately)

I hope this helps

6 0
3 years ago
A contractor is required by a county planning department to submit one, two, three, four, five, or six forms (depending on the n
Ratling [72]

Answer:

a)

k = \dfrac{1}{21}

b) 0.476

c) 0.667    

Step-by-step explanation:

We are given the following in the question:

Y = the number of forms required of the next applicant.

Y: 1, 2, 3, 4, 5, 6

The probability is given by:

P(y) = ky

a) Property of discrete probability distribution:

\displaystyle\sum P(y_i) = 1\\\\\Rightarrow k(1+2+3+4+5+6) = 1\\\\\Rightarrow k(21) = 1\\\\\Rightarrow k = \dfrac{1}{21}

b) at most four forms are required

P(y \leq 4) = \displaystyle\sum^{y=4}_{y=1}P(y_i)\\\\P(y \leq 4) = \dfrac{1}{21}(1+2+3+4) = \dfrac{10}{21} = 0.476

c) probability that between two and five forms (inclusive) are required

P(2\leq y \leq 5) = \displaystyle\sum^{y=5}_{y=2}P(y_i)\\\\P(2\leq y \leq 5) = \dfrac{1}{21}(2+3+4+5) = \dfrac{14}{21} = 0.667

8 0
3 years ago
How many multiples of 5 are there between 199 and 1,198? Hint: an = a1 + d(n − 1), where a1 is the first term and d is the commo
GaryK [48]
An=a1+d (n-1)
A1=200 since that's the first term that can be a multiple of 5
N=? That's what we need to find
An=1195 since that's the last multiple of 5 that we can use
D=5
Plug in
1195=200+5 (n-1)
-200 both sides
995=5 (n-1)
Distribute 5 to n-1
995=5n-5
+5 both sides
1000=5n
÷5 both sides
N=200 there are 200 multiples of 5 in between 199 and 1198
4 0
3 years ago
Help please if you know the answer
Karo-lina-s [1.5K]

Answer:D

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • What is a ratio of $156 of 5:2
    5·1 answer
  • Solve the equation for the letter d: C = pi times d
    8·2 answers
  • Solve the formula 12x+2y=10 for y
    11·2 answers
  • Carol gave a 15 deposit on a diamond bracelet. The deposit was $73.50. What was the cost of the bracelet?
    10·1 answer
  • Brayden's horse gained 9 pounds over a 3 week
    10·2 answers
  • There are 50 animals in a shelter. Sixty percent of the animals are dogs. Which equation can be used to find the number of dogs
    8·2 answers
  • A student wants to use the property
    9·1 answer
  • If OP = 15 r = 1/3 what is OP
    7·2 answers
  • To stay properly hydrated, a person should drink 32 fluid ounces of water for every 60 minutes of exercise. How much water shoul
    14·2 answers
  • Ahmed says that 0.505005000500005 is a rational number because it is a repeating decimal, is he correct? Explain your reasoning.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!