18 kg of 15% copper and 72 kg of 60% copper should be combined by the metalworker to create 90 kg of 51% copper alloy.
<u>Step-by-step explanation:</u>
Let x = kg of 15% copper alloy
Let y = kg of 60% copper alloy
Since we need to create 90 kg of alloy we know:
x + y = 90
51% of 90 kg = 45.9 kg of copper
So we're interested in creating 45.9 kg of copper
We need some amount of 15% copper and some amount of 60% copper to create 45.9 kg of copper:
0.15x + 0.60y = 45.9
but
x + y = 90
x= 90 - y
substituting that value in for x
0.15(90 - y) + 0.60y = 45.9
13.5 - 0.15y + 0.60y = 45.9
0.45y = 32.4
y = 72
Substituting this y value to solve for x gives:
x + y = 90
x= 90-72
x=18
Therefore, in order to create 90kg of 51% alloy, we'd need 18 kg of 15% copper and 72 kg of 60% copper.
Answer:
The answer to the question: "Will Hank have the pool drained in time?" is:
- <u>Yes, Hank will have the pool drained in time</u>.
Step-by-step explanation:
To identify the time Hank needs to drain the pool, we can begin with the time Hank has from 8:00 AM to 2:00 PM in minutes:
- Available time = 6 hours * 60 minutes / 1 hour (we cancel the unit "hour")
- Available time = 360 minutes
Now we know Hank has 360 minutes to drain the pool, we're gonna calculate the volume of the pool with the given measurements and the next equation:
- Volume of the pool = Deep * Long * Wide
- Volume of the pool = 2 m * 10 m * 8 m
- Volume of the pool = 160 m^3
Since the drain rate is in gallons, we must convert the obtained volume to gallons too, we must know that:
Now, we use a rule of three:
If:
- 1 m^3 ⇒ 264.172 gal
- 160 m^3 ⇒ x
And we calculate:
(We cancel the unit "m^3)- x = 42267.52 gal
At last, we must identify how much time take to drain the pool with a volume of 42267.52 gallons if the drain rate is 130 gal/min:
- Time to drain the pool =
(We cancel the unit "gallon") - Time to drain the pool = 325.1347692 minutes
- <u>Time to drain the pool ≅ 326 minutes</u> (I approximate to the next number because I want to assure the pool is drained in that time)
As we know, <u><em>Hank has 360 minutes to drain the pool and how it would be drained in 326 minutes approximately, we know Hank will have the pool drained in time and will have and additional 34 minutes</em></u>.
No because ex:1times5=5 because 1 goes into 5 fiverimes
One hundred and 3 million seven hundred twenty seven thousand and four hundred ninety-five
100,000,000+3,000,000+700,000+20,000+7,000+400+90+5