1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yuradex [85]
2 years ago
15

What is the change in elevation from 8500m and -300m

Mathematics
1 answer:
bogdanovich [222]2 years ago
5 0

Answer:

8800m

Step-by-step explanation:

difference between 8500 and -300 is 8800m

You might be interested in
Can anybody help me with my schoolwork right now?
denis23 [38]

Sure, what is the question.

6 0
2 years ago
Someone please help asap!!! How do I know where to shade at?
alexira [117]

Shade the top side of the boundary line if you have the inequality symbols > or ≥. Shade the bottom side of the boundary line if you have the inequality symbols < or ≤.

\large\bold\red{Answered By Ayush8928 }

=================•✠•================

6 0
3 years ago
I have a geometry test I’m gonna fail. If you know any of these answers please put the number of the question,than the answer. I
blsea [12.9K]

Answer:

Step-by-step explanation:

20) Angles 1 and 2 are supplementary angles( sum of angle 1 and angle 2 is 180 degrees)

21) Angles 1 and 2 are supplementary angles( sum of angle 1 and angle 2 is 180 degrees)

22) Angle TUW + Angle WUV =Angle TUV

Therefore

(7x-9) + (5x - 11) = (9x+1)

7x-9 + 5x - 11 = 9x+1

7x +5x-9x =1 + 11 + 9

3x = 21

x = 21/3= 7

23) GEF - 13 = 5DEG

and DEF = 149 degrees

GEF = 5DEG + 13

Sum of angles (GEF + DEG)=DEF

Therefore,

DEG + 5DEG - 13 = 149

6DEG = 149 + 13 = 162

DEG = 162/6 = 27

GEF = 5DEG = 27 × 5 =135

24) 7x - 1 + 6x -1 = 180(sum of angles in a straight line)

13x-2 = 180

13x = 180+2 = 182

x = 182/13 = 14

25) 5x + 4 + 8x - 7 = 180( sum of supplementary angles is 180)

13x = 180+7-4= 183

x = 183/13 = 14.08

3 0
2 years ago
“encontrar la integral indefinida y verificar el resultado mediante derivación”
Oliga [24]

I=\displaystyle\int\frac x{(1-x^2)^3}\,\mathrm dx

Haz la sustitución:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{y^3}=\frac1{4y^2}+C=\frac1{4(1-x^2)^2}+C

Para confirmar el resultado:

\dfrac{\mathrm dI}{\mathrm dx}=\dfrac14\left(-\dfrac{2(-2x)}{(1-x^2)^3}\right)=\dfrac x{(1-x^2)^3}

I=\displaystyle\int\frac{x^2}{(1+x^3)^2}\,\mathrm dx

Sustituye:

y=1+x^3\implies\mathrm dy=3x^2\,\mathrm dx

\implies I=\displaystyle\frac13\int\frac{\mathrm dy}{y^2}=-\frac1{3y}+C=-\frac1{3(1+x^3)}+C

(Te dejaré confirmar por ti mismo.)

I=\displaystyle\int\frac x{\sqrt{1-x^2}}\,\mathrm dx

Sustituye:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{\sqrt y}=-\frac12(2\sqrt y)+C=-\sqrt{1-x^2}+C

I=\displaystyle\int\left(1+\frac1t\right)^3\frac{\mathrm dt}{t^2}

Sustituye:

u=1+\dfrac1t\implies\mathrm du=-\dfrac{\mathrm dt}{t^2}

\implies I=-\displaystyle\int u^3\,\mathrm du=-\frac{u^4}4+C=-\frac{\left(1+\frac1t\right)^4}4+C

Podemos hacer que esto se vea un poco mejor:

\left(1+\dfrac1t\right)^4=\left(\dfrac{t+1}t\right)^4=\dfrac{(t+1)^4}{t^4}

\implies I=-\dfrac{(t+1)^4}{4t^4}+C

4 0
3 years ago
4y-4=_____<br> 4(y+1)=___<br> 2+4y=____
34kurt
If they are looking to have them all simplified, this is how they should look. 

4y - 4
4y + 4
4y + 1
3 0
3 years ago
Other questions:
  • How do you solve this problem. showing work
    11·1 answer
  • Please help with problem 8. (ONLY IF YOU KNOW)
    10·2 answers
  • G(n)=n^2+4^n; fine g(2)
    11·1 answer
  • Solve and show your work. 3(x-4) = 12x
    14·2 answers
  • Write an equation of a line that passes through the point (-2, 4) and has a <br> slope of 5.
    6·1 answer
  • Use the Algebra Tiles to construct the algebraic expression for this situation:
    10·2 answers
  • Help me with this, please
    14·1 answer
  • I need help please show work
    15·2 answers
  • Can you answer this the question is in the photo
    14·1 answer
  • Jan has $30. Brenda has $66. How many DVDs can they buy with their total amount if one DVD costs $12?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!