Answer:
The appropriate probability model for X is a Binomial distribution,
X
Bin (<em>n</em> = 5, <em>p</em> = 1/33).
Step-by-step explanation:
The random variable <em>X</em> can be defined as the number of American births resulting in a defect.
The proportion of American births that result in a birth defect is approximately <em>p</em> = 1/33.
A random sample of <em>n</em> = 5 American births are selected.
It is assumed that the births are independent, i.e. a birth can be defective or not is independent of the other births.
In this experiment the success is defined as a defective birth.
The random variable <em>X</em> satisfies all criteria of a Binomial distribution.
The criteria are:
- Number of observations is constant
- Independent trials
- Each trial has only two outcomes: Success and Failure
- Same probability of success for each trial
Thus, the appropriate probability model for X is a Binomial distribution, Bin (<em>n</em> = 5, <em>p</em> = 1/33).
Answer: y=32/5
Step-by-step explanation:
Do you notice anything strange about those points ?
(0, 1),
(1, 2),
(2, 4),
(3, 8).
The y-coordinate of each point is (2) raised to the power of the x-coordinate.
First point: x=0, y=2⁰ = 1
Second point: x=1, y=2¹ = 2
Third point: x=2, y=2² = 4
Fourth point: x=3, y=2³ = 8
The equation of the curve appears to be
y = 2 ^ x .
So, after 10 hours, x=10, and y = 2¹⁰ = 1,024 .
Answer:
Step-by-step explanation:
3.25/.8=4.0625
multiply that by 5.6
$22.75 is your answer
1. Observe that the f(t) is change by 4 per time t => there's a acceleration of 4 => f''(t) = 4; Take the derivative of it we can get a velocity function. f'(t) = 4t + c. Since the velocity from 100 to 80 is -20 (average), this means at t = 0, f'(0) = -22 => f'(t) = 4t - 22; Take the derivative again to get the position function: f(t) = 2t^2 - 22t + d, here d = 100 should be trivial. So, the function that models the relationship is f(t) = 2t^2 - 22t + 100.
2. By the compound interest formula:
A = P (1 + r/n)^(nt) , since it's yearly, so n = 1;
results A(t) = 100 (1+0.12)^t.
3. The average rate of change is basically finding the slope, m = y1 - y2 / x1 - x2.