Answer:
A. 162 m²
Step-by-step explanation:
==>Given:
Isosceles trapezoid with:
base a = 19m
base b = 35m
Perimeter = 74meters
==>Required:
Area of trapezoid
==>Solution:
Recall: the length of the legs of an isosceles trapezoid are equal.
Perimeter of isosceles trapezoid = sum of the parallel sides + 2(length of a leg of the trapezoid)
Let l = leg of trapezoid.
Perimeter = 74m
Sum of parallel sides = a+b = 19+35 = 54m
Thus,
74 = 54 + 2(l)
74 - 54 = 2(l)
20 = 2(l)
l = 20/2 = 10m
Let's find area:
Area = ½(a+b)*h
a = 19
b = 35
h = ?
Using Pythagorean theorem, let's find h as follows:
h² = l² - [(35-19)/2)²
h² = 10² - [16/2]²
h² = 100 - 64
h² = 36
h = √36 = 6m
Area = ½ x (a+b) × h
= ½ × (19+35) × 6
= ½ × 54 × 6
= 27 × 6
Area = 162m²
I got D.
There's a few ways to solve it; I prefer using tables, but there are functions on a TI-84 that'll do it for you too. The logic here is, you have a standard normal distribution which means right away, the mean is 0 and the standard deviation is 1. This means you can use a Z table that helps you calculate the area beneath a normal curve for a range of values. Here, your two Z scores are -1.21 and .84. You might notice that this table doesn't account for negative values, but the cool thing about a normal distribution is that we can assume symmetry, so you can just look for 1.21 and call it good. The actual calculation here is:
1 - Z-score of 1.21 - Z-score .84 ... use the table or calculator
1 - .1131 - .2005 = .6864
Because this table calculates areas to the RIGHT of the mean, you have to play around with it a little to get the bit in the middle that your graph asks for. You subtract from 1 to make sure you're getting the area in the middle and not the area of the tails in this problem.
We are 99% confident that the interval from 0.102 to 0.236 actually does contain the true value of the population proportion <span>p.</span>
Answer:
the distance between points M and P
Step-by-step explanation:
-1+7=6
Hope this helps! :)
If the drawing of your octagon (or whatever) has been separated into triangles, and one triangle's area<span> is labeled, then you do not need to know the apothem. Just take the </span>area<span> of that one triangle, and multiply by the number of sides in the original </span>polygon<span>.</span>