To find the equation of a line using two given set of points, you must first find slope. To do so, we must use the slope formula:
y2 - y1 / x2 - x1
In this case:
1 - 9 / -1 - 3 = -8 / -4
- 8 / -4 = 2 (simplified)
Now we can use the point-slope formula:
y - y1 = m(x - x1)
y - 1 = 2(x + 1 )
y - 1 = 2x + 2
y = 2x + 3
In order to make 3x - y = 6 in slope intercept form, we must isolate y.
- y = -3x + 6
Note: y cannot be negative, so we'll multiply both sides by -1
( -1 ) - y = - 3x + 6 ( -1 ) = y = 3x -6
Answer:
a= 40-3b-c/5
a=-10+3b-2c
a=50+2b-3c/14
Step-by-step explanation:
5a+3b+c-(3b+c)=40-(3b+c)
5a=40-3b-c
5a/5=40/5-3b/5-c/5
a= 40-3b-c/5
a-3b+2c-(3b+2c)=-10-(-3b+2c)
a=-10+3b-2c
14a-2b+3c-(-2b+3c)=50-(-2b+3c)
14a=50+2b-3c
14a/14=50/14+2b/14-3c/14
a=50+2b-3c/14
<span>For the plane, we have z = 5x + 9y
For the region, we first find its boundary curves' points of intersection.
x = x^4 ==> x = 0, 1.
Since x > x^4 for y in [0, 1],
The volume of the solid equals
![\int\limits^1_0 { \int\limits_{x^4}^x {(5x+9y)} \, dy } \, dx = \int\limits^1_0 {\left[5xy+ \frac{9}{2} y^2\right]_{x^4}^{x}} \, dx \\ \\ =\int\limits^1_0 {\left[\left(5x(x)+ \frac{9}{2} (x)^2\right)-\left(5x(x^4)+ \frac{9}{2} (x^4)^2\right)\right]} \, dx \\ \\ =\int\limits^1_0 {\left(5x^2+ \frac{9}{2} x^2-5x^5- \frac{9}{2} x^8\right)} \, dx =\int\limits^1_0 {\left( \frac{19}{2} x^2-5x^5- \frac{9}{2} x^8\right)} \, dx \\ \\ =\left[ \frac{19}{6} x^3- \frac{5}{6} x^6- \frac{1}{2} x^9\right]^1_0](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E1_0%20%7B%20%5Cint%5Climits_%7Bx%5E4%7D%5Ex%20%7B%285x%2B9y%29%7D%20%5C%2C%20dy%20%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5E1_0%20%7B%5Cleft%5B5xy%2B%20%5Cfrac%7B9%7D%7B2%7D%20y%5E2%5Cright%5D_%7Bx%5E4%7D%5E%7Bx%7D%7D%20%5C%2C%20dx%20%20%5C%5C%20%20%5C%5C%20%3D%5Cint%5Climits%5E1_0%20%7B%5Cleft%5B%5Cleft%285x%28x%29%2B%20%5Cfrac%7B9%7D%7B2%7D%20%28x%29%5E2%5Cright%29-%5Cleft%285x%28x%5E4%29%2B%20%5Cfrac%7B9%7D%7B2%7D%20%28x%5E4%29%5E2%5Cright%29%5Cright%5D%7D%20%5C%2C%20dx%20%20%5C%5C%20%20%5C%5C%20%3D%5Cint%5Climits%5E1_0%20%7B%5Cleft%285x%5E2%2B%20%5Cfrac%7B9%7D%7B2%7D%20x%5E2-5x%5E5-%20%5Cfrac%7B9%7D%7B2%7D%20x%5E8%5Cright%29%7D%20%5C%2C%20dx%20%3D%5Cint%5Climits%5E1_0%20%7B%5Cleft%28%20%5Cfrac%7B19%7D%7B2%7D%20x%5E2-5x%5E5-%20%5Cfrac%7B9%7D%7B2%7D%20x%5E8%5Cright%29%7D%20%5C%2C%20dx%20%5C%5C%20%20%5C%5C%20%3D%5Cleft%5B%20%5Cfrac%7B19%7D%7B6%7D%20x%5E3-%20%5Cfrac%7B5%7D%7B6%7D%20x%5E6-%20%5Cfrac%7B1%7D%7B2%7D%20x%5E9%5Cright%5D%5E1_0)

</span>
Answer:
88.83
Step-by-step explanation:
To find the mean of a set of numbers is to find the average a set of numbers.
To solve for the mean you have to add all of the values together and divide that sum by the number of values there are.
Ex. 81, 97, 99, 89, 91, 76
81 + 97 + 99 + 89 + 91 + 76 = 533
533 / 6 = 88.83
↓
(number of values)
First, simplify. Combine like terms
10x - 3x = 7x
7x + 1 = x + 4
Isolate the x. Subtract x from both sides, and 1 from both sides
7x (-x) + 1 (-1) = x (-x) + 4 (-1)
7x - x = 4 - 1
Simplify
6x = 3
Isolate the x. Divide 6 from both sides
6x/6 = 3/6
x = 1/2
1/2, or 0.5 is your answer for x.
hope this helps