Answer:
72.73
Step-by-step explanation:
Answer:
The length of the chord is 16 cm
Step-by-step explanation:
Mathematically, a line from the center of the circle to a chord divides the chord into 2 equal portions
From the first part of the question, we can get the radius of the circle
The radius form the hypotenuse, the two-portions of the chord (12/2 = 6 cm) and the distance from the center to the chord forms the other side of the triangle
Thus, by Pythagoras’ theorem; the square of the hypotenuse equals the sum of the squares of the two other sides
Thus,
r^2 = 8^2 + 6^2
r^2= 64 + 36
r^2 = 100
r = 10 cm
Now, we want to get a chord length which is 6 cm away from the circle center
let the half-portion that forms the right triangle be c
Using Pythagoras’ theorem;
10^2 = 6^2 + c^2
c^2 = 100-36
c^2 = 64
c = 8
The full
length of the chord is 2 * 8 = 16 cm
The answer would be 144 inches, found by multiplying the length of the paper by the width.
Answer:
x = 5
Step-by-step explanation:
Using Pythagoras' identity in the right triangle.
The square on the hypotenuse is equal to the sum of the squares on the other 2 sides, that is
x² + 12² = 13², so
x² + 144 = 169 ( subtract 144 from both sides )
x² = 25 ( take the square root of both sides )
x =
= 5
Answer:
y = 10
x = 17
Step-by-step explanation:
4y - 3 = 37
4y = 37 + 3
4y = 40
y = 40 / 4
y = 10
3x - 9 = 42
3x = 42 + 9
3x = 51
x = 51 / 3
x = 17
<em>Hope that helps!</em>