1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Illusion [34]
2 years ago
8

{ question \hookleftarrow}" alt=" \sf \huge{ question \hookleftarrow}" align="absmiddle" class="latex-formula">
If \alpha \: and \: \beta are roots of a equation " ax² + by + c ", then find the value of the following in terms of a , b and c ~


\boxed{ \boxed{ \sf  \sqrt{ \alpha}  +   \sqrt{ \beta }  = \:  ?}}


​
Mathematics
2 answers:
BabaBlast [244]2 years ago
5 0

\underline{\bf{Given \:equation:-}}

\\ \sf{:}\dashrightarrow ax^2+by+c=0

\sf Let\:roots\;of\:the\: equation\:be\:\alpha\:and\beta.

\sf We\:know,

\boxed{\sf sum\:of\:roots=\alpha+\beta=\dfrac{-b}{a}}

\boxed{\sf Product\:of\:roots=\alpha\beta=\dfrac{c}{a}}

\underline{\large{\bf Identities\:used:-}}

\boxed{\sf (a+b)^2=a^2+2ab+b^2}

\boxed{\sf (√a)^2=a}

\boxed{\sf \sqrt{a}\sqrt{b}=\sqrt{ab}}

\boxed{\sf \sqrt{\sqrt{a}}=a}

\underline{\bf Final\: Solution:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}

\bull\sf Apply\: Squares

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2= (\sqrt{\alpha})^2+2\sqrt{\alpha}\sqrt{\beta}+(\sqrt{\beta})^2

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2 \alpha+\beta+2\sqrt{\alpha\beta}

\bull\sf Put\:values

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2=\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\sqrt{\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}}

\bull\sf Simplify

\\ \sf{:}\dashrightarrow \underline{\boxed{\bf {\sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\sqrt{\dfrac{-b}{a}}+\sqrt{2}\dfrac{c}{a}}}}

\underline{\bf More\: simplification:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{-b}}{\sqrt{a}}+\dfrac{c\sqrt{2}}{a}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{a}\sqrt{-b}+c\sqrt{2}}{a}

\underline{\Large{\bf Simplified\: Answer:-}}

\\ \sf{:}\dashrightarrow\underline{\boxed{\bf{ \sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\dfrac{\sqrt{-ab}+c\sqrt{2}}{a}}}}

GarryVolchara [31]2 years ago
5 0

The value  \sqrt{\alpha } +\sqrt{\beta } in terms of a, b and c is \sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

<h3 />

Roots of a quadratic equation

Given the quadratic equation ax² + bx + c, the sum and product  of the roots are expressed as:

  • \alpha +\beta =-\frac{b}{a}
  • \alpha \beta =\frac{c}{a}

Get the value of the radical expression \sqrt{\alpha } +\sqrt{\beta }

Taking the square of the expression will give:

  • (\sqrt{\alpha } +\sqrt{\beta } )^2=(\sqrt{\alpha } )^2+(\sqrt{\beta } )^2+2\sqrt{\alpha \beta}

Take the square root of both sides:

\sqrt{(\sqrt{\alpha } +\sqrt{\beta } )^2}  =\sqrt{(\sqrt{\alpha } )^2+(\sqrt{\beta } )^2+2\sqrt{\alpha \beta} } \\&#10;\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(\alpha }+{\beta} )+2\sqrt{\alpha \beta} } \\

Substitute the product and the sum values into the expression to have:

\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(-\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

Hence the value  \sqrt{\alpha } +\sqrt{\beta } in terms of a, b and c is \sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

Learn more on the roots of equation here: brainly.com/question/25841119

You might be interested in
Renata ganó una rifa y se le entregaron 7832 pesos. Ella decidió repartirlos de la siguiente manera: a su mamá 3/8 del total, a
gogolik [260]

Answer:

A su mamá

= 2937 pesos

A su hermano

= 1566.4 pesos

El resto para ella

= 3328.6 pesos

Step-by-step explanation:

El número total de pesos que cada uno consiguió se calcula como:

Su madre

= 3/8 del total

= 3/8 × 7832

= 2937 pesos

Su hermano

= 1/5 del total

= 1/5 × 7832

= 1566.4 pesos

Sí misma

= El resto

= 7832 - (2937 + 1566,4)

= 7832 - 4503.4

= 3328.6 pesos

5 0
3 years ago
a local newspaper assigns a rating between 1 and 10 to every book and movie it reviews. Victor gathered data about five titles w
Nookie1986 [14]

The points that represent this data are shown in the image attached below.

<h3>What is a scatter plot?</h3>

A scatter plot is a type of graph which is used for the graphical representation of the values of two variables, with the resulting points showing any association (correlation) between the data set.

Based on the information provided in table above, the points that represent this data are shown in the image attached below.

Read more on scatterplot here: brainly.com/question/6592115

#SPJ1

3 0
2 years ago
Simplify 5(x + y) -3(x - y)
denis23 [38]

Answer:

2x + 8y

Step-by-step explanation:

5x + 5y - 3x + 3y

5x - 3x + 5y + 3y

2x + 8y

6 0
3 years ago
The lateral edge PA of a triangular pyramid ABCP is perpendicular to the base and PA = 2sqrt5 in. The base edges AB = 10 in, AC
DIA [1.3K]

Answer:

PQ = √84 = 2√21 in ≈ 9.165 in

Step-by-step explanation:

The base edges AB = 10 in, AC = 17 in, and BC = 21 in

Q ∈ BC and AQ is the altitude of the base.

Let BQ = x in ⇒ CQ = (21 - x) in

ΔAQB a right triangle at Q

∴ AQ² = AB² - BQ² = 10² - x²  ⇒(1)

ΔAQC a right triangle at Q

∴ AQ² = AC² - CQ² = 17² - (21-x)²  ⇒(2)

Equating (1) and (2)

∴  10² - x² = 17² - (21-x)²

∴ 10² - x² = 17² - (21² - 42x + x²)

∴  10² - x² = 17² - 21² + 42x - x²

∴ 10² - 17² + 21² = 42x

∴ 42x = 252

∴ x = 252/42 = 6

Substitute at (1)

∴ AQ² = AB² - BQ² = 10² - x² = 100 - 36 = 64 = 8²

∴ AQ = 8 in

∵ The lateral edge PA of a triangular pyramid ABCP is perpendicular to the base

∴ PA⊥AQ

∴ ΔPAQ is a right triangle at A,

PA = 2sqrt5 in  and AQ = 8 in

∴ PQ (hypotenuse) = √(PA² + AQ²)

∴ PQ = √[(2√5)² + 8²] = √(20+64) = √84 = 2√21 in ≈ 9.165 in

6 0
3 years ago
Triangle PQR has vertices P(–2, 6), Q(–8, 4), and R(1, –2). It is translated according to the rule (x, y) → (x – 2, y – 16).
vampirchik [111]
Translation (x,y) ⇒ (x-2, y-16) means the triangle PQR is translated two units to the left and sixteen units down. 

Each x-vertices will move two units left and y-vertices will move 16 units down

P(-2, 6) ⇒ (-2-2, 6-16) ⇒ (-4, -10)

Hence y-coordinate of the image of P is -10

6 0
4 years ago
Read 2 more answers
Other questions:
  • Rubin drew this diagram of his garden.how can you dividethe shape to find the area?
    10·2 answers
  • Derrick has $3500 in a savings account that earns 12% annually. If the interest is not compounded, how much interest will he ear
    14·1 answer
  • Perimeter and Area Geometry help, please don't comment if you aren't 100% sure. Will give Brainliest and upvote
    8·2 answers
  • Order the following steps to explain the correct process for calculating net income.
    15·1 answer
  • How to solve it please
    11·2 answers
  • Given g(x) = x2-4<br> Find g(-3)
    7·2 answers
  • A cyclist begins traveling 18 mph. At the same time and at the same starting point, an inline skater follows the cyclist's path
    15·1 answer
  • Helpppppp PLEASEEE GIVING BRAINLIEST
    5·1 answer
  • Multiplty the fractions and in the answer get a fraction.​
    10·1 answer
  • The temperature is -5 degrees in the morning and it rises 20 degrees in
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!