1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Illusion [34]
2 years ago
8

{ question \hookleftarrow}" alt=" \sf \huge{ question \hookleftarrow}" align="absmiddle" class="latex-formula">
If \alpha \: and \: \beta are roots of a equation " ax² + by + c ", then find the value of the following in terms of a , b and c ~


\boxed{ \boxed{ \sf  \sqrt{ \alpha}  +   \sqrt{ \beta }  = \:  ?}}


​
Mathematics
2 answers:
BabaBlast [244]2 years ago
5 0

\underline{\bf{Given \:equation:-}}

\\ \sf{:}\dashrightarrow ax^2+by+c=0

\sf Let\:roots\;of\:the\: equation\:be\:\alpha\:and\beta.

\sf We\:know,

\boxed{\sf sum\:of\:roots=\alpha+\beta=\dfrac{-b}{a}}

\boxed{\sf Product\:of\:roots=\alpha\beta=\dfrac{c}{a}}

\underline{\large{\bf Identities\:used:-}}

\boxed{\sf (a+b)^2=a^2+2ab+b^2}

\boxed{\sf (√a)^2=a}

\boxed{\sf \sqrt{a}\sqrt{b}=\sqrt{ab}}

\boxed{\sf \sqrt{\sqrt{a}}=a}

\underline{\bf Final\: Solution:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}

\bull\sf Apply\: Squares

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2= (\sqrt{\alpha})^2+2\sqrt{\alpha}\sqrt{\beta}+(\sqrt{\beta})^2

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2 \alpha+\beta+2\sqrt{\alpha\beta}

\bull\sf Put\:values

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2=\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\sqrt{\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}}

\bull\sf Simplify

\\ \sf{:}\dashrightarrow \underline{\boxed{\bf {\sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\sqrt{\dfrac{-b}{a}}+\sqrt{2}\dfrac{c}{a}}}}

\underline{\bf More\: simplification:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{-b}}{\sqrt{a}}+\dfrac{c\sqrt{2}}{a}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{a}\sqrt{-b}+c\sqrt{2}}{a}

\underline{\Large{\bf Simplified\: Answer:-}}

\\ \sf{:}\dashrightarrow\underline{\boxed{\bf{ \sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\dfrac{\sqrt{-ab}+c\sqrt{2}}{a}}}}

GarryVolchara [31]2 years ago
5 0

The value  \sqrt{\alpha } +\sqrt{\beta } in terms of a, b and c is \sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

<h3 />

Roots of a quadratic equation

Given the quadratic equation ax² + bx + c, the sum and product  of the roots are expressed as:

  • \alpha +\beta =-\frac{b}{a}
  • \alpha \beta =\frac{c}{a}

Get the value of the radical expression \sqrt{\alpha } +\sqrt{\beta }

Taking the square of the expression will give:

  • (\sqrt{\alpha } +\sqrt{\beta } )^2=(\sqrt{\alpha } )^2+(\sqrt{\beta } )^2+2\sqrt{\alpha \beta}

Take the square root of both sides:

\sqrt{(\sqrt{\alpha } +\sqrt{\beta } )^2}  =\sqrt{(\sqrt{\alpha } )^2+(\sqrt{\beta } )^2+2\sqrt{\alpha \beta} } \\&#10;\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(\alpha }+{\beta} )+2\sqrt{\alpha \beta} } \\

Substitute the product and the sum values into the expression to have:

\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(-\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

Hence the value  \sqrt{\alpha } +\sqrt{\beta } in terms of a, b and c is \sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

Learn more on the roots of equation here: brainly.com/question/25841119

You might be interested in
I need with this question please. Please help me
klemol [59]

Answer:

idk

Step-by-step explanation:

to lazy

7 0
3 years ago
Need asap final exam help fast
antiseptic1488 [7]

I uploaded the answer to a file hosting. Here's link:

tinyurl.com/wpazsebu

7 0
3 years ago
Read 2 more answers
Without solving the equation -3x+5 =44 tell whether the value of x is negative or positive
marshall27 [118]

Answer:

x= -13

The value of x is negative

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Solve and recieve brain list ​
Mashutka [201]

Answer:

-x -7y=-15

y=3x-1

-x-7(3x-1)=-15

-x-21x+7=-15

-22x+7=-15

-22x=-15-7

-22x=-22

x=-22/-22

x=1

y=3x-1

y=3(1)-1

y=3-1

y=2

(1, 2)

4 0
3 years ago
Given 3x^2+x-4/x-1 what are the domain and range
Katarina [22]

Answer:

  • doman: x ≠ 1
  • range: y ≠ 7

Step-by-step explanation:

The domain is the horizontal extent of the graph, the set of x-values for which the function is defined. The range is the vertical extent of the graph, the set of y-values defined by the function.

<h3>Simplified</h3>

The given function is undefined where its denominator is zero, at x=1. Everywhere else, it can be simplified to ...

  \dfrac{3x^2+x-4}{x-1}=\dfrac{(x-1)(3x+4)}{(x-1)}=3x+4\quad x\ne 1

<h3>Domain</h3>

The simplified function (3x+4) is defined for all values of x except x=1. The simplest description is ...

  x ≠ 1

In interval notation, this is ...

  (-∞, 1) ∪ (1, ∞)

<h3>Range</h3>

The simplified function is capable of producing all values of y except the one corresponding to x=1: 3(1)+4 = 7. The simplest description is ...

  y ≠ 7

In interval notation, this is ...

  (-∞, 7) ∪ (7, ∞)

6 0
1 year ago
Other questions:
  • Write an equation for the line that is parallel to the given line and that passes through the given point.
    7·1 answer
  • What are two expressions that are equivalent to 2(x+4)
    13·1 answer
  • What is 161 equals 124 plus f as an equation
    11·2 answers
  • 9−[28÷(5+(3⋅3))] what is the answer
    8·1 answer
  • Given: g(x) = x-4 and<br> h(x) = 2x-8.<br> What are the restrictions on the domain of gh?
    7·1 answer
  • What is the graph of the function 3(1/5)x?
    7·1 answer
  • _______ will produce a rational answer when multiplied by 0.9
    10·2 answers
  • I got two questions I need help with
    15·1 answer
  • Write the parent function equation for a linear function
    7·1 answer
  • Best answer gets brainliest!
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!