1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Illusion [34]
2 years ago
8

{ question \hookleftarrow}" alt=" \sf \huge{ question \hookleftarrow}" align="absmiddle" class="latex-formula">
If \alpha \: and \: \beta are roots of a equation " ax² + by + c ", then find the value of the following in terms of a , b and c ~


\boxed{ \boxed{ \sf  \sqrt{ \alpha}  +   \sqrt{ \beta }  = \:  ?}}


​
Mathematics
2 answers:
BabaBlast [244]2 years ago
5 0

\underline{\bf{Given \:equation:-}}

\\ \sf{:}\dashrightarrow ax^2+by+c=0

\sf Let\:roots\;of\:the\: equation\:be\:\alpha\:and\beta.

\sf We\:know,

\boxed{\sf sum\:of\:roots=\alpha+\beta=\dfrac{-b}{a}}

\boxed{\sf Product\:of\:roots=\alpha\beta=\dfrac{c}{a}}

\underline{\large{\bf Identities\:used:-}}

\boxed{\sf (a+b)^2=a^2+2ab+b^2}

\boxed{\sf (√a)^2=a}

\boxed{\sf \sqrt{a}\sqrt{b}=\sqrt{ab}}

\boxed{\sf \sqrt{\sqrt{a}}=a}

\underline{\bf Final\: Solution:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}

\bull\sf Apply\: Squares

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2= (\sqrt{\alpha})^2+2\sqrt{\alpha}\sqrt{\beta}+(\sqrt{\beta})^2

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2 \alpha+\beta+2\sqrt{\alpha\beta}

\bull\sf Put\:values

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2=\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\sqrt{\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}}

\bull\sf Simplify

\\ \sf{:}\dashrightarrow \underline{\boxed{\bf {\sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\sqrt{\dfrac{-b}{a}}+\sqrt{2}\dfrac{c}{a}}}}

\underline{\bf More\: simplification:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{-b}}{\sqrt{a}}+\dfrac{c\sqrt{2}}{a}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{a}\sqrt{-b}+c\sqrt{2}}{a}

\underline{\Large{\bf Simplified\: Answer:-}}

\\ \sf{:}\dashrightarrow\underline{\boxed{\bf{ \sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\dfrac{\sqrt{-ab}+c\sqrt{2}}{a}}}}

GarryVolchara [31]2 years ago
5 0

The value  \sqrt{\alpha } +\sqrt{\beta } in terms of a, b and c is \sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

<h3 />

Roots of a quadratic equation

Given the quadratic equation ax² + bx + c, the sum and product  of the roots are expressed as:

  • \alpha +\beta =-\frac{b}{a}
  • \alpha \beta =\frac{c}{a}

Get the value of the radical expression \sqrt{\alpha } +\sqrt{\beta }

Taking the square of the expression will give:

  • (\sqrt{\alpha } +\sqrt{\beta } )^2=(\sqrt{\alpha } )^2+(\sqrt{\beta } )^2+2\sqrt{\alpha \beta}

Take the square root of both sides:

\sqrt{(\sqrt{\alpha } +\sqrt{\beta } )^2}  =\sqrt{(\sqrt{\alpha } )^2+(\sqrt{\beta } )^2+2\sqrt{\alpha \beta} } \\&#10;\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(\alpha }+{\beta} )+2\sqrt{\alpha \beta} } \\

Substitute the product and the sum values into the expression to have:

\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(-\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

Hence the value  \sqrt{\alpha } +\sqrt{\beta } in terms of a, b and c is \sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

Learn more on the roots of equation here: brainly.com/question/25841119

You might be interested in
Suppose that during it's flight, the elevation `e` (in feet) of a certain airplane and its time `t,` in minutes since takeoff, a
kifflom [539]

Answer:

Suppose that during its flight, the elevation e (in feet) of a certain airplane and its time ... since takeoff, are related by a linear equation. Consider the graph of this equation, with time represented on the horizontal axis and elevation on the vertical axis. ... Unit 3; Linear Relationships Lesson 9: Slopes Don't Have to be Positive.

Step-by-step explanation:

8 0
3 years ago
Carter and his cousin are playing a game where they pick up colored sticks. Carter currently has 24 points
Fudgin [204]
The answer is 15 because I checked it with Socratic
5 0
3 years ago
Please help me with this 3x=9
fenix001 [56]

Answer:x = 3

Step-by-step explanation:

X =9/3

X=3

6 0
3 years ago
Read 2 more answers
What is the surface area of the prism?
kow [346]
The\ surface\ area:A_s=2B+(S_1+S_2+S_3)\cdot H\\B=\frac{12\cdot5}{2}=\frac{60}{2}=\boxed{30\ (yd^2)}\\\\S_1=5yd;\ S_2=12yd;\ S_3=13yd;\ h=8yd\\\\therefore\\\\A_s=2\cdot30+(5+12+13)\cdot8=60+30\cdot8=60+240=\boxed{300\ (yd^2)}Volume\ of\ the\ prism:V=B\cdot H\\\\B\ (base)\ it's\ a\ right\ triangle:B=\frac{12\cdot5}{2}=\frac{60}{2}=\boxed{30\ (yd^2)}\\\\H=8yd\\\\therefore\\\\V=30\cdot8=\boxed{240\ (yd^2)}\leftarrow\boxed{C}
8 0
3 years ago
Read 2 more answers
Help me and i will mark you the brainlyist
8_murik_8 [283]
1a. n ≤ 21
1b. n ≥ 5
1c. n > 3/5

2d. n < 14
2e. n ≥ 14

8 0
2 years ago
Read 2 more answers
Other questions:
  • can you figure out what the next five numbers would be in this sequence of numbers? 1,6,7,12,14,19,22
    10·2 answers
  • If mean and median are close does it mean symmetrical
    6·1 answer
  • How old am i if 500 reduced by 4 times my age is 184
    9·1 answer
  • Find the slope of the line perpendicular to the line y=6x+11
    10·1 answer
  • What two things balance to maintain the shape of a star?
    13·2 answers
  • The radius of the moon is approximately 1,350,000 m. What is the radius in kilometers? (1 km=1000m)
    13·1 answer
  • The following prism has a base area of 20\pi20π20, pi square units and a volume of 120\pi120π120, pi cubic units. The cylinder h
    11·1 answer
  • Daniela has a container full of marbles. She gives away some of her marbles every day for five days. Each day, she has 1/4 the n
    6·1 answer
  • Helps i sucks at maths pwease help meh
    11·2 answers
  • Question 1-6
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!