1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Illusion [34]
2 years ago
8

{ question \hookleftarrow}" alt=" \sf \huge{ question \hookleftarrow}" align="absmiddle" class="latex-formula">
If \alpha \: and \: \beta are roots of a equation " ax² + by + c ", then find the value of the following in terms of a , b and c ~


\boxed{ \boxed{ \sf  \sqrt{ \alpha}  +   \sqrt{ \beta }  = \:  ?}}


​
Mathematics
2 answers:
BabaBlast [244]2 years ago
5 0

\underline{\bf{Given \:equation:-}}

\\ \sf{:}\dashrightarrow ax^2+by+c=0

\sf Let\:roots\;of\:the\: equation\:be\:\alpha\:and\beta.

\sf We\:know,

\boxed{\sf sum\:of\:roots=\alpha+\beta=\dfrac{-b}{a}}

\boxed{\sf Product\:of\:roots=\alpha\beta=\dfrac{c}{a}}

\underline{\large{\bf Identities\:used:-}}

\boxed{\sf (a+b)^2=a^2+2ab+b^2}

\boxed{\sf (√a)^2=a}

\boxed{\sf \sqrt{a}\sqrt{b}=\sqrt{ab}}

\boxed{\sf \sqrt{\sqrt{a}}=a}

\underline{\bf Final\: Solution:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}

\bull\sf Apply\: Squares

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2= (\sqrt{\alpha})^2+2\sqrt{\alpha}\sqrt{\beta}+(\sqrt{\beta})^2

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2 \alpha+\beta+2\sqrt{\alpha\beta}

\bull\sf Put\:values

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2=\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\sqrt{\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}}

\bull\sf Simplify

\\ \sf{:}\dashrightarrow \underline{\boxed{\bf {\sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\sqrt{\dfrac{-b}{a}}+\sqrt{2}\dfrac{c}{a}}}}

\underline{\bf More\: simplification:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{-b}}{\sqrt{a}}+\dfrac{c\sqrt{2}}{a}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{a}\sqrt{-b}+c\sqrt{2}}{a}

\underline{\Large{\bf Simplified\: Answer:-}}

\\ \sf{:}\dashrightarrow\underline{\boxed{\bf{ \sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\dfrac{\sqrt{-ab}+c\sqrt{2}}{a}}}}

GarryVolchara [31]2 years ago
5 0

The value  \sqrt{\alpha } +\sqrt{\beta } in terms of a, b and c is \sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

<h3 />

Roots of a quadratic equation

Given the quadratic equation ax² + bx + c, the sum and product  of the roots are expressed as:

  • \alpha +\beta =-\frac{b}{a}
  • \alpha \beta =\frac{c}{a}

Get the value of the radical expression \sqrt{\alpha } +\sqrt{\beta }

Taking the square of the expression will give:

  • (\sqrt{\alpha } +\sqrt{\beta } )^2=(\sqrt{\alpha } )^2+(\sqrt{\beta } )^2+2\sqrt{\alpha \beta}

Take the square root of both sides:

\sqrt{(\sqrt{\alpha } +\sqrt{\beta } )^2}  =\sqrt{(\sqrt{\alpha } )^2+(\sqrt{\beta } )^2+2\sqrt{\alpha \beta} } \\&#10;\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(\alpha }+{\beta} )+2\sqrt{\alpha \beta} } \\

Substitute the product and the sum values into the expression to have:

\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(-\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

Hence the value  \sqrt{\alpha } +\sqrt{\beta } in terms of a, b and c is \sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

Learn more on the roots of equation here: brainly.com/question/25841119

You might be interested in
Find the measure of the indicated angle to the nearest degree.
makvit [3.9K]
You would do tan<span>Ɵ = 9/12
tan^-1(9/12) = </span><span>Ɵ
</span><span>Ɵ = 36.87 degress
make sure your calculator is in degree mode

</span>
8 0
3 years ago
Read 2 more answers
2. Determine if either of the following equations are functions? Draw the graphs and explain how
nekit [7.7K]

Answer:

Both equation represent functions

Step-by-step explanation:

The function is the relation that for each input, there is only one output.

A. Consider the equation

y=-\dfrac{3}{5}x+2

This equation represents the function, because for each input value x, there is exactly one output value y.

To check whether the equation represents a function, you can use vertical line test. If all vertical lines intersect the graph of the function in one point, then the equation represents the function.

When you intersect the graph of the function y=-\dfrac{3}{5}x+2 with vertical lines, there will be only one point of intersection (see blue graph in attached diagram). So this equation represents the function.

B. Consider the equation

y=x-x^2

This equation represents the function, because for each input value x, there is exactly one output value y.

When you intersect the graph of the function y=x-x^2 with vertical lines, there will be only one point of intersection (see green graph in attached diagram). So this equation represents the function.

4 0
3 years ago
Answer number one please
tankabanditka [31]

Answer:

-3 + 6 = -3

Step-by-step explanation:

add the terms -3 and 6

exponent law

6 0
3 years ago
Read 2 more answers
Create a proportion using the form %/100 = is/of = to represent the following word problem. 78% of what number is 42?
Aliun [14]

Answer:

.78 x = 42

x = 42 / .78

The number is 53.8461538462


Step-by-step explanation:


6 0
4 years ago
Read 2 more answers
A=1/2bh for b<img src="https://tex.z-dn.net/?f=a%3D1%2F2bh%20for%20b" id="TexFormula1" title="a=1/2bh for b" alt="a=1/2bh for b"
valkas [14]
Times both sides by 2
2A=bh
divide both sides b h
\frac{2A}{h}=b
b=\frac{2A}{h}
5 0
3 years ago
Other questions:
  • Graph of function F(t) close as possible the value of F(-2)
    14·1 answer
  • Which best describes a system of equations that has no solution?
    6·1 answer
  • Can you help me with prime and compsite numbers
    10·1 answer
  • Julius bought 3 games on sale. the original price of each game was "d" dollars. the expression 3(d - 0.2d) shows the total amoun
    9·1 answer
  • 3 <br> solve ————— &gt; 0 <br> x - 2
    9·1 answer
  • 12ab = 4 solve for a
    9·2 answers
  • E^ln 1 =
    14·2 answers
  • HARD BUT LOTS OF POINTS PLS HELP FIRST GET BRAINLIEST.<br><br> Find the area of the figure below.
    6·2 answers
  • 55. Find the area of half of a circle with a radius of 16 mm.
    10·2 answers
  • Find 10x+y when x= 10 and y = 3.<br> The answer is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!