1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Illusion [34]
2 years ago
8

{ question \hookleftarrow}" alt=" \sf \huge{ question \hookleftarrow}" align="absmiddle" class="latex-formula">
If \alpha \: and \: \beta are roots of a equation " ax² + by + c ", then find the value of the following in terms of a , b and c ~


\boxed{ \boxed{ \sf  \sqrt{ \alpha}  +   \sqrt{ \beta }  = \:  ?}}


​
Mathematics
2 answers:
BabaBlast [244]2 years ago
5 0

\underline{\bf{Given \:equation:-}}

\\ \sf{:}\dashrightarrow ax^2+by+c=0

\sf Let\:roots\;of\:the\: equation\:be\:\alpha\:and\beta.

\sf We\:know,

\boxed{\sf sum\:of\:roots=\alpha+\beta=\dfrac{-b}{a}}

\boxed{\sf Product\:of\:roots=\alpha\beta=\dfrac{c}{a}}

\underline{\large{\bf Identities\:used:-}}

\boxed{\sf (a+b)^2=a^2+2ab+b^2}

\boxed{\sf (√a)^2=a}

\boxed{\sf \sqrt{a}\sqrt{b}=\sqrt{ab}}

\boxed{\sf \sqrt{\sqrt{a}}=a}

\underline{\bf Final\: Solution:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}

\bull\sf Apply\: Squares

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2= (\sqrt{\alpha})^2+2\sqrt{\alpha}\sqrt{\beta}+(\sqrt{\beta})^2

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2 \alpha+\beta+2\sqrt{\alpha\beta}

\bull\sf Put\:values

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2=\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\sqrt{\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}}

\bull\sf Simplify

\\ \sf{:}\dashrightarrow \underline{\boxed{\bf {\sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\sqrt{\dfrac{-b}{a}}+\sqrt{2}\dfrac{c}{a}}}}

\underline{\bf More\: simplification:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{-b}}{\sqrt{a}}+\dfrac{c\sqrt{2}}{a}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{a}\sqrt{-b}+c\sqrt{2}}{a}

\underline{\Large{\bf Simplified\: Answer:-}}

\\ \sf{:}\dashrightarrow\underline{\boxed{\bf{ \sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\dfrac{\sqrt{-ab}+c\sqrt{2}}{a}}}}

GarryVolchara [31]2 years ago
5 0

The value  \sqrt{\alpha } +\sqrt{\beta } in terms of a, b and c is \sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

<h3 />

Roots of a quadratic equation

Given the quadratic equation ax² + bx + c, the sum and product  of the roots are expressed as:

  • \alpha +\beta =-\frac{b}{a}
  • \alpha \beta =\frac{c}{a}

Get the value of the radical expression \sqrt{\alpha } +\sqrt{\beta }

Taking the square of the expression will give:

  • (\sqrt{\alpha } +\sqrt{\beta } )^2=(\sqrt{\alpha } )^2+(\sqrt{\beta } )^2+2\sqrt{\alpha \beta}

Take the square root of both sides:

\sqrt{(\sqrt{\alpha } +\sqrt{\beta } )^2}  =\sqrt{(\sqrt{\alpha } )^2+(\sqrt{\beta } )^2+2\sqrt{\alpha \beta} } \\&#10;\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(\alpha }+{\beta} )+2\sqrt{\alpha \beta} } \\

Substitute the product and the sum values into the expression to have:

\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(-\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\\sqrt{\alpha } +\sqrt{\beta }=\sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

Hence the value  \sqrt{\alpha } +\sqrt{\beta } in terms of a, b and c is \sqrt{{(\frac{b}{a})^2 } +2\sqrt{\frac{c}{a} } } \\

Learn more on the roots of equation here: brainly.com/question/25841119

You might be interested in
Mai wants to make an open top box by cutting out corners of a square piece of cardboard and folding up the sides. The cardboard
Bumek [7]

Answer:

V(x)=(4x^{3}-40x^{2}+100x)\ cm^3

The domain for x is all real numbers greater than zero and less than 5 com

Step-by-step explanation:

<em><u>The question is</u></em>

What is the volume of the open top box as a function of the side length x in cm of the square cutouts?

see the attached figure to better understand the problem

Let

x -----> the side length in cm of the square cutouts

we know that

The volume of the open top box is

V=LWH

we have

L=(10-2x)\ cm

W=(10-2x)\ cm

H=x)\ cm

substitute

V(x)=(10-2x)(10-2x)x\\\\V(x)=(100-40x+4x^{2})x\\\\V(x)=(4x^{3}-40x^{2}+100x)\ cm^3

Find the domain for x

we know that

(10-2x) > 0\\10> 2x\\ 5 > x\\x < 5\ cm

so

The domain is the interval (0,5)

The domain is all real numbers greater than zero and less than 5 cm

therefore

The volume of the open top box as a function of the side length x in cm of the square cutouts is

V(x)=(4x^{3}-40x^{2}+100x)\ cm^3

5 0
3 years ago
How can you tell if a situation is linear from a table?
monitta

Answer:

Step-by-step explanation:

If each successive y value is the same distance above the previous y value, the situation is linear.

4 0
3 years ago
Read 2 more answers
Find the area of squares having side 10 cm.​
alexira [117]

Step-by-step explanation:

area of square = l^2

so 10^2

100cm^2

5 0
3 years ago
Read 2 more answers
Which table of ordered pairs represents a proportional relationship?
natali 33 [55]

Answer:

B

Step-by-step explanation:

Every (x,y) pair is equal to each other, thus making them proportional :)

5 0
1 year ago
45.6/109.2 = x/115<br><br> Is x, 48.02?
MAXImum [283]
Yes correct x is 48.02 here is why.

simplify 45.6/109.2 to 0.417582

multiply both sides by 115

simplify 0.417582 x 115 to 48.021978

switch sides

Answer: x = 48.021978
4 0
3 years ago
Other questions:
  • What is 51/10 as a percent
    11·1 answer
  • 75,000 people went to watch the Huston Dynamos play Los Angeles Galaxy in the US Open final Cup At half time, Huston Dynamos wer
    11·1 answer
  • a window in the shape of a parrallelogram has a base of 36 inches and a height of 45 inches. what is the area of the window ​
    10·1 answer
  • Which statement represents the simplified form of the given equation and correctly describes the solution? 1/2(4x + 2) = 2(x + 1
    14·1 answer
  • Use slopes and y-intercepts to determine if the lines x=−7 and x=5 are parallel.
    10·1 answer
  • 0+3y=31<br> 16-16 <br> 3y = 21<br><br><br> 34 = 21<br> 3 3<br><br> 4=7
    11·1 answer
  • Somebody helppppp pleassse
    5·1 answer
  • write the equation of the line that passes through the points (8, -1) and (2,-5) in standard form, given that the point- slope f
    14·1 answer
  • Please explain this problem fully
    5·1 answer
  • You purchase 5 tickets to a football game from TicketMaster. In addition to the cost per ticket, the agency charges a convenienc
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!