9514 1404 393
Answer:
D.) a+2b
Step-by-step explanation:
The integers 'a' and 'b' can be any, so you can choose a couple and evaluate these expressions to see what you get. For example, we can let a=1 and b=0. For these values, the offered expressions evaluate to ...
A) 3(0) = 0 . . . even
B) 1 +3 = 4 . . . even
C) 2(1+0) = 2 . . . even
D) 1 +2(0) = 1 . . . odd
_____
<em>Additional comment</em>
These rules apply to even/odd:
- odd × odd = odd
- odd × even = even
- even × even = even
- odd + odd = even
- odd + even = odd
- even + even = even
Then A is (odd)(even) = even; B is (odd)+(odd) = even; C is (even)(whatever) = even; D = (odd)+(even) = odd.
Answer:
50,000? This is my answer sorry if wrong
Step-by-step explanation:
Answer:
(0,3) and (5,0)
Step-by-step explanation:
Answer:
0.45% probability that they are both queens.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes
The combinations formula is important in this problem:
is the number of different combinations of x objects from a set of n elements, given by the following formula.

Desired outcomes
You want 2 queens. Four cards are queens. I am going to call then A,B,C,D. A and B is the same outcome as B and A. That is, the order is not important, so this is why we use the combinations formula.
The number of desired outcomes is a combinations of 2 cards from a set of 4(queens). So

Total outcomes
Combinations of 2 from a set of 52(number of playing cards). So

What is the probability that they are both queens?

0.45% probability that they are both queens.