<span>d = 950 m - 4.9t^2 m
The distance an object moves under constant acceleration is
d = 0.5at^2
where
d = distance
a = acceleration
t = time.
Since we're falling and since we're starting at 950 m above ground, the formula becomes:
d = 950 m - 0.5at^2
Substituting known values, and simplifying gives us
d = 950 m - 0.5*9.8 m/s^2 * t^2
d = 950 m - 4.9 m/s^2 * t^2
Since time is in seconds, we can cancel out the seconds in the units, getting
d = 950 m - 4.9t^2 m</span>
Answer:
A. 5 m/s
Explanation:
From the graph, for the first 2 seconds, the graph is a straight line meaning that the slope is a constant.
Average speed of an object is the rate of change of position. Here, the position of the object changes from 0 m to 10 m for a time interval of 2 seconds.
The change in position (
) and time interval (
) are given as:

Therefore, the average speed (
) is given as the ratio of the total change in position and the time interval for the change.

Hence, the average speed is 5 m/s.
Answer:
288N
Explanation:
Given parameters:
Mass of Cheetah = 12kg
Acceleration = 24m/s²
Unknown:
Force needed by the cheetah to run = ?
Solution:
The force needed by the Cheetah to run is the net force.
According to Newton's law;
Force = mass x acceleration
Insert the given parameters and solve;
Force = 12 x 24 = 288N