Answer:
the tension of the rope is 34.95 N
Explanation:
Given;
length of the rope, L = 3 m
mass of the rope, m = 0.105 kg
frequency of the wave, f = 40 Hz
wavelength of the wave, λ = 0.79 m
Let the tension of the rope = T
The speed of the wave is given as;

Therefore, the tension of the rope is 34.95 N
Answer:
look at explanation
Explanation:
If heat rises, then why is it so cold at the top of a mountain? Heat does indeed rise. More specifically, a mass of air that is warmer than the air around it expands, becomes less dense, and will therefore float atop the cooler air. ... So when warm air rises, it cools off.
Answer:
4.0 m/s
Explanation:
The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.
Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

where here we have
d = 3.0 m is the horizontal distance covered
vx is the horizontal velocity
t = 1.3 s is the duration of the fall
Solving for vx,

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

where
h = 4.0 m is the initial height
vy is the initial vertical velocity
We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

So now we can find the magnitude of the initial velocity:

Answer:
The answer to your question is vo = 5.43 m/s
Explanation:
Data
distance = d= 5.8 m
height = 3 m
height 2 = 1.7 m
angle = 60°
vo = ?
g = 9.81 m/s²
Formula
hmax = vo²sinФ/ 2g
Solve for vo²
vo² = 2ghmax / sinФ
Substitution
vo² = 2(9.81)(3 - 1.7) / 0.866
Simplification
vo² = 19.62(1.3) / 0.866
vo² = 25.51 / 0.866
vo² = 29.45
Result
vo = 5.43 m/s
Answer:
0.80 m
Explanation:
elastic potential energy formula
elastic potential energy = 0.5 × spring constant × (extension) 2