The answer is 45 degrees.
According to the Kinematics of projectile motion, if the purpose is to maximize range, optimum angle of landing is always 45 degrees.If the purpose is to maximize range & projection height is zero, the optimum angle of projection (and landing) is 45 degrees.
Answer:

Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes uniformly in time.
Being a the constant acceleration, vo the initial speed, vf the final speed, and t the time, the following relation applies:

The car initially travels at vo=7.35 m/s and accelerates at a rate of
during t=2.09 s.
The final velocity is:


Answer:
mass of the second ball is 0.379m
Explanation:
Given;
mass of first ball = m
let initial velocity of first ball = u₁
let final velocity of first ball = v₁ = 0.45u₁
let the mass of the second ball = m₂
initial velocity of the second ball, u₂ = 0
let the final velocity of the second ball = v₂
Apply the principle of conservation of linear momentum;
mu₁ + m₂u₂ = mv₁ + m₂v₂
mu₁ + 0 = 0.45u₁m + m₂v₂
mu₁ = 0.45u₁m + m₂v₂ -------- equation (i)
Velocity for elastic collision in one dimension;
u₁ + v₁ = u₂ + v₂
u₁ + 0.45u₁ = 0 + v₂
1.45u₁ = v₂ (final velocity of the second ball)
Substitute in v₂ into equation (i)
mu₁ = 0.45u₁m + m₂(1.45u₁)
mu₁ = 0.45u₁m + 1.45m₂u₁
mu₁ - 0.45u₁m = 1.45m₂u₁
0.55mu₁ = 1.45m₂u₁
divide both sides by u₁
0.55m = 1.45m₂
m₂ = 0.55m / 1.45
m₂ = 0.379m
Therefore, mass of the second ball is 0.379m (where m is mass of the first ball)
The answer is in chambers carved into the rock of a mountain<span>. Radioactive waste should be well disposed where they are little to no anthropogenic activity that would uncover them. </span><span>This is especially critical for high-level radioactive waste should be buried deep up to 2000 meters. While low-level radioactive waste can be buried 100 meters into the ground such as in sand, the risk is that it could contaminate the water table.</span>
C. Seismic energy
This is energy that is released in earthquakes.