Explanation:
Elements that belong to same group contains same number of valence electrons. Hence, they tend to show similar chemical properties.
When we move across a period then number of electrons get added to the same shell. As a result, there will be no increase in size of elements.
Also, metals are the elements that belong to group 1, 2 and d-block elements are also known as metals. Metallic character of elements decreases when we move left to right in a periodic table.
As most reactive metals are placed on the left side of periodic table.
Since, size of elements increases on moving down the group. So, an element is able to easily lose its valence electrons because of less force of attraction between its nucleus and valence electrons.
As a result, there will be increase in reactivity of metals on moving down the group.
Thus, we can conclude that given sentences are as follows.
- Elements in the same group have the same number of valence electrons.
-
Elements in the same period have the same number of electron shells.
-
Metallic elements become less reactive as you move left to right in a period.
-
Metallic elements become more reactive as you move top to bottom in a group.
C.
Water is polar because one side of the molecule is positive and the other is negative.
Longer, this is because the H in HNO2 is bonded with an oxygen, no longer allowing this structure to have a resonance structure.
NO2 on the other hand has one double bond and one single bond, so it has a resonance structure. And resonance structures are actually one structure so there isn't really a single and double bond, it's actually a 1 and 1/2 bond that calls for a higher bond order.
And I higher bond order will result in a shorter lengths!
I hope this helps out!!! And just out of curiosity, is this off of an AP FRQ packet??
He paid 2 dollars for each bag. Then add 15 cents for that and he would charge $2.15 for each bag.
Answer : The reaction is endothermic.
Explanation :
Formula used :

where,
= change in temperature = 
Q = heat involved in the dissolution of KCl = ?
m = mass = 0.500 + 50.0 = 50.5 g
c = specific heat of resulting solution = 
Now put all the given value in the above formula, we get:


The heat involved in the dissolution of KCl is positive that means as the change in temperature decreases then the reaction is endothermic and as the change in temperature increases then the reaction is exothermic.
Hence, the reaction is endothermic.