I can’t really see it but it looks like 1
The tank is leaking at the rate of 6 gallons per hour.
If you do nothing but sit there and watch it all afternoon,
here's what you'll see:
First hour . . . . 6 gallons leaks out
Second hour . another 6 gallons leaks out
Third hour . . . another 6 gallons leaks out
Total gone after 3 hours: (6 + 6 + 6) = 18 gallons .
Answer:
number one 2.7052932226
number two 2.0870584201
Step-by-step explanation:
multiply the 'n' values altogether and take out the nth root of the numbers, where n is the total number of values. For example: for a given set of two numbers such as 8 and 1, the geometric mean is equal to √(8×1) = √8 = 2√2.
We begin with an unknown initial investment value, which we will call P. This value is what we are solving for.
The amount in the account on January 1st, 2015 before Carol withdraws $1000 is found by the compound interest formula A = P(1+r/n)^(nt) ; where A is the amount in the account after interest, r is the interest rate, t is time (in years), and n is the number of compounding periods per year.
In this problem, the interest compounds annually, so we can simplify the formula to A = P(1+r)^t. We can plug in our values for r and t. r is equal to .025, because that is equal to 2.5%. t is equal to one, so we can just write A = P(1.025).
We then must withdraw 1000 from this amount, and allow it to gain interest for one more year.
The principle in the account at the beginning of 2015 after the withdrawal is equal to 1.025P - 1000. We can plug this into the compound interest formula again, as well as the amount in the account at the beginning of 2016.
23,517.6 = (1.025P - 1000)(1 + .025)^1
23,517.6 = (1.025P - 1000)(1.025)
Divide both sides by 1.025
22,944 = (1.025P - 1000)
Add 1000 to both sides
23,944 = 1.025P
Divide both by 1.025 for the answer
$22,384.39 = P. We now have the value of the initial investment.