Your answer is 4/14 or 2/7. There are two possibilities when you flip a coin, heads or tails. Then for the spinner there are 7. Multiply them by each other to get the total number of outcomes of the situation of 14. Then there are only 4 odd numbers from 1-7. This means that you would only be able to get an odd number and heads 4 times.
Hope this helped!
Answer:
26/
43
(Decimal: 0.604651)
Step-by-step explanation:
((2)(4)−3)2+1/
3+
100/
5
(2)
Answer:
The composition of f(g(x)) is:

Step-by-step explanation:
Given two functions are:

we have to find the composition of f and g which can also be written as: fog(x) or f(g(x))
The method to find the composition is that we will put the function g in place of x in function f

Hence,
The composition of f(g(x)) is:

Answer:
Step-by-step explanation:
YES IS THE ANSWER BECAUSE X=9
AND 11+3=87
Answer:
See below for all the cube roots
Step-by-step explanation:
<u>DeMoivre's Theorem</u>
Let
be a complex number in polar form, where
is an integer and
. If
, then
.
<u>Nth Root of a Complex Number</u>
If
is any positive integer, the nth roots of
are given by
where the nth roots are found with the formulas:
for degrees (the one applicable to this problem)
for radians
for 
<u>Calculation</u>
<u />![z=27(cos330^\circ+isin330^\circ)\\\\\sqrt[3]{z} =\sqrt[3]{27(cos330^\circ+isin330^\circ)}\\\\z^{\frac{1}{3}} =(27(cos330^\circ+isin330^\circ))^{\frac{1}{3}}\\\\z^{\frac{1}{3}} =27^{\frac{1}{3}}(cos(\frac{1}{3}\cdot330^\circ)+isin(\frac{1}{3}\cdot330^\circ))\\\\z^{\frac{1}{3}} =3(cos110^\circ+isin110^\circ)](https://tex.z-dn.net/?f=z%3D27%28cos330%5E%5Ccirc%2Bisin330%5E%5Ccirc%29%5C%5C%5C%5C%5Csqrt%5B3%5D%7Bz%7D%20%3D%5Csqrt%5B3%5D%7B27%28cos330%5E%5Ccirc%2Bisin330%5E%5Ccirc%29%7D%5C%5C%5C%5Cz%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%3D%2827%28cos330%5E%5Ccirc%2Bisin330%5E%5Ccirc%29%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5C%5C%5C%5Cz%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%3D27%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%28cos%28%5Cfrac%7B1%7D%7B3%7D%5Ccdot330%5E%5Ccirc%29%2Bisin%28%5Cfrac%7B1%7D%7B3%7D%5Ccdot330%5E%5Ccirc%29%29%5C%5C%5C%5Cz%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%3D3%28cos110%5E%5Ccirc%2Bisin110%5E%5Ccirc%29)
<u>First cube root where k=2</u>
<u />![\sqrt[3]{27}\biggr[cis(\frac{330^\circ+360^\circ(2)}{3})\biggr]\\3\biggr[cis(\frac{330^\circ+720^\circ}{3})\biggr]\\3\biggr[cis(\frac{1050^\circ}{3})\biggr]\\3\biggr[cis(350^\circ)\biggr]\\3\biggr[cos(350^\circ)+isin(350^\circ)\biggr]](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D%5Cbiggr%5Bcis%28%5Cfrac%7B330%5E%5Ccirc%2B360%5E%5Ccirc%282%29%7D%7B3%7D%29%5Cbiggr%5D%5C%5C3%5Cbiggr%5Bcis%28%5Cfrac%7B330%5E%5Ccirc%2B720%5E%5Ccirc%7D%7B3%7D%29%5Cbiggr%5D%5C%5C3%5Cbiggr%5Bcis%28%5Cfrac%7B1050%5E%5Ccirc%7D%7B3%7D%29%5Cbiggr%5D%5C%5C3%5Cbiggr%5Bcis%28350%5E%5Ccirc%29%5Cbiggr%5D%5C%5C3%5Cbiggr%5Bcos%28350%5E%5Ccirc%29%2Bisin%28350%5E%5Ccirc%29%5Cbiggr%5D)
<u>Second cube root where k=1</u>
![\sqrt[3]{27}\biggr[cis(\frac{330^\circ+360^\circ(1)}{3})\biggr]\\3\biggr[cis(\frac{330^\circ+360^\circ}{3})\biggr]\\3\biggr[cis(\frac{690^\circ}{3})\biggr]\\3\biggr[cis(230^\circ)\biggr]\\3\biggr[cos(230^\circ)+isin(230^\circ)\biggr]](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D%5Cbiggr%5Bcis%28%5Cfrac%7B330%5E%5Ccirc%2B360%5E%5Ccirc%281%29%7D%7B3%7D%29%5Cbiggr%5D%5C%5C3%5Cbiggr%5Bcis%28%5Cfrac%7B330%5E%5Ccirc%2B360%5E%5Ccirc%7D%7B3%7D%29%5Cbiggr%5D%5C%5C3%5Cbiggr%5Bcis%28%5Cfrac%7B690%5E%5Ccirc%7D%7B3%7D%29%5Cbiggr%5D%5C%5C3%5Cbiggr%5Bcis%28230%5E%5Ccirc%29%5Cbiggr%5D%5C%5C3%5Cbiggr%5Bcos%28230%5E%5Ccirc%29%2Bisin%28230%5E%5Ccirc%29%5Cbiggr%5D)
<u>Third cube root where k=0</u>
<u />![\sqrt[3]{27}\biggr[cis(\frac{330^\circ+360^\circ(0)}{3})\biggr]\\3\biggr[cis(\frac{330^\circ}{3})\biggr]\\3\biggr[cis(110^\circ)\biggr]\\3\biggr[cos(110^\circ)+isin(110^\circ)\biggr]](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D%5Cbiggr%5Bcis%28%5Cfrac%7B330%5E%5Ccirc%2B360%5E%5Ccirc%280%29%7D%7B3%7D%29%5Cbiggr%5D%5C%5C3%5Cbiggr%5Bcis%28%5Cfrac%7B330%5E%5Ccirc%7D%7B3%7D%29%5Cbiggr%5D%5C%5C3%5Cbiggr%5Bcis%28110%5E%5Ccirc%29%5Cbiggr%5D%5C%5C3%5Cbiggr%5Bcos%28110%5E%5Ccirc%29%2Bisin%28110%5E%5Ccirc%29%5Cbiggr%5D)