Answer:
18 L
Explanation:
Use ideal gas law:
PV = nRT
Find initial number of moles, but first convert to units that match the gas constant units.
(200,000 Pa) (0.025 m³) = n (8.314 Pa m³ / mol / K) (25 + 273.15 K)
n = 2.017 mol
At the new pressure and temperature:
(250,000 Pa) V = (2.017 mol) (8.314 Pa m³ / mol / K) (0 + 273.15 K)
V = 0.018 m³
V = 18 L
Answer:
N = 1364 N
Explanation:
given data
accelerate upward = 5.70 m/s²
mass = 88.0 kg
solution
normal force is in upward direction so, weight of the student in downward direction and acceleration is in upward direction so formula is express as
N - mg = ma ...........................1
N = m × (g+a)
put here value
N = 88.0 × (9.8 + 5.70)
N = 1364 N
Answer:
The correct option is D
Explanation:
From the question we are told that
The intensity of the first electromagnetic wave is
The amplitude of the electric field is 
The intensity of the second electromagnetic wave is 
Generally the an electromagnetic wave intensity is mathematically represented as

Looking at this equation we see that

=> ![\frac{I_1}{I_2} = [ \frac{ E_{max}_1}{ E_{max}_2} ] ^2](https://tex.z-dn.net/?f=%5Cfrac%7BI_1%7D%7BI_2%7D%20%20%3D%20%20%5B%20%5Cfrac%7B%20E_%7Bmax%7D_1%7D%7B%20E_%7Bmax%7D_2%7D%20%5D%20%5E2)
=> 
=>
=>
The key is in "they lock together". This tells you this is a complete inelastic collision and therefore you can use the formula:
m1*v1+m2*v2=v(m1+m2)
Plug in numbers:
2000*3+2000*2=v(2000+2000)
so v=2 m/s, obviously in the same direction of motion in which they were both moving.
Answer:
E = 1000 x
Explanation:
The electric potential and the electric field are related by the formula
dV = - E . dx
Bold represents vectors.
The point represents the scalar product, in this case we calculate the electric field in the x-axis and the potential is also in this axis so the scalar product is reduced to the algebraic product
E = dV /dx
Let's make the derivative
E = - 2ax
Let's replace the values
E = -2 (-500) x
E = 1000 x