<span>There are 5 different values of ml in the 5d sublevel (-2, -1, 0, 1, and 2).</span>
We simply asked to name three uses for mercury.
The most common and well-known use of mercury is the production of thermometers. It's property to stay liquid at room temperature makes it ideal for a temperature indicator. However, the use of mercury is thermometers has been phased out due to health hazards.
It is also used to form an amalgam which is the result of its combination with silver or gold. Mercury has been used to mine gold and silver. This application has also been phased out.
Today's use of mercury includes mercury-vapor lamps which are the bright lamps used in high-ways.
Answer:
t = 2.58*10^-6 s
Explanation:
For a nonconducting sphere you have that the value of the electric field, depends of the region:

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
R: radius of the sphere = 10.0/2 = 5.0cm=0.005m
In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

with this values of a you can use the following formula:

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s
Answer:
-414.96 N
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


The force the ground exerts on the parachutist is -414.96 N
If the distance is shorter than 0.75 m then the acceleration will increase causing the force to increase
Answer:
<em>Magnitude of the Frictional force is 200 N</em>
Explanation:
The frictional force is the force that tries to oppose relative motion between two surfaces that are contacting. The coefficient of static friction is the coefficient of friction of a body that is not moving.
Newton's third law of motion states that action and reaction forces are equal and opposite. So the frictional force felt on the filing cabinet will be equal to the applied force pulling the cabinet.
Frictional force = Force applied
Force applied = 200 N
Therefore, the magnitude of the friction force on the filing cabinet is 200 N