Answer:
Time = 0.317 seconds.
Explanation:
Given the following data;
Distance = 1.65km to meters = 1.65 * 1000 = 1650 meters
We know that the speed of sound in steel is equal to 5200m/s
To find the time to hear the sound of the whistle;
Time = distance/speed
Substituting into the equation, we have
Time = 1650/5200
Time = 0.317 seconds.
Therefore, it will take him 0.317 seconds to hear the sound of the whistle.
Melting ice would damage this polar bears habitat meaning the polar bear may decrease
<span>Answer:
First we need to find the acceleration.
torque on cylinder Ď„ = T * r where T is the string tension;
T = m(g - a) where a is the acceleration of the cylinder. Then
Ď„ = m(g - a)r
But also τ = Iα. For a solid cylinder, I = ½mr²,
and if the string doesn't slip, then α = a / r, so
τ = ½mr² * a/r = ½mra.
Since Ď„ = Ď„, we have
m(g - a)r = ½mra → m, r cancel, leaving
g - a = ½a
g = 3a/2
a = 2g/3 where g, of course, is gravitational acceleration.
We know that v(t) = a*t, so for our cylinder
v(t) = 2gt / 3 â—„ linear velocity
and ω = v(t) / r = 2gt / 3r ◄ angular velocity</span>