Answer:
See explanations below
Step-by-step explanation:
Given the function
f(x) = 3x+12
Let y = f(x)
y = 3x+12
Replace y with x
x = 3y+12
Make y the subject
3y = x-12
y = (x-12)/3
Hence the required inverse is!
g(x) = (x-12)/3
b) To show that the functions are inverses, we must show that f(g(x)) = g(f(x))
f(g(x)) = f((x-12)/3)
Replace x in f(x) with x-12/3
f(g(x)) = 3(x-12)/3 +12
f(g(x)) = x-12+12
f(g(x)) = x
Similarly for g(f(x))
g(f(x)) = g(3x+12)
g(f(x)) = (3x+12-12)/3
g(f(x)) = 3x/3
g(f(x)) = x
Since f(g(x)) = g(f(x)) = x, hence they are inverses of each other
c) Given f(g(x)) = x
f(g(–2)) = -2
The domain is the input variable of the function. Hence the domain is -2
Answer:

Step-by-step explanation:
well the values for x are from -2 to ∞
so we can write it as

Subtract 5y from both sides of the equation
X=13-5y
<em><u>your </u></em><em><u>question</u></em><em><u>:</u></em><em><u> </u></em>
A pair of equations is shown below:
y = 7x − 9
y = 3x − 1
Part A: In your own words, explain how you can solve the pair of equations graphically. Write the slope and y-intercept for each equation that you will plot on the graph to solve the equations. (6 points) YOU HAVE ALREADY ANSWERED
Part B: What is the solution to the pair of equations? (4 points)
<em><u>answer:</u></em><em><u> </u></em>
<em>t</em><em>he </em><em>solution </em><em>to </em><em>the </em><em>pair </em><em>of </em><em>equations </em><em>would </em><em>be </em>
(2,5)
<em><u>how </u></em><em><u>do </u></em><em><u>we </u></em><em><u>get </u></em><em><u>this</u></em><em><u>?</u></em>
<em> </em><em>you </em><em>put </em><em>both </em><em>equations </em><em>in </em><em>a </em><em>desmos </em><em>graphing </em><em>calculator</em><em> </em>
<em>hope </em><em>this </em><em>helps,</em><em> </em><em>have </em><em>a </em><em>great </em><em>night </em><em>:</em><em>)</em><em> </em>