Answer: 
Step-by-step explanation:
When we throw a die , Total outcomes =6
When we throw 3 dice , Total outcomes = 6 x 6 x 6 = 216 [by fundamental counting principle]
Given : Three fair dice are rolled, one red, one green and one blue.
Favorable outcomes : When the upturned faces of the three dice are all of different numbers i.e. no repetition of numbers allowed
By Permutations , the number of favorable outcomes = 
The probability that the upturned faces of the three dice are all of different numbers = 

The probability that the upturned faces of the three dice are all of different numbers is
.
Answer:
B i think
Step-by-step explanation:
Why not? Because every math system you've ever worked with has obeyed these properties! You have never dealt with a system where a×b did not in fact equal b×a, for instance, or where (a×b)×c did not equal a×(b×c). Which is why the properties probably seem somewhat pointless to you. Don't worry about their "relevance" for now; just make sure you can keep the properties straight so you can pass the next test. The lesson below explains how I kept track of the properties.