By using <span>De Moivre's theorem:
</span>
If we have the complex number ⇒ z = a ( cos θ + i sin θ)
∴
![\sqrt[n]{z} = \sqrt[n]{a} \ (cos \ \frac{\theta + 360K}{n} + i \ sin \ \frac{\theta +360k}{n} )](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7Bz%7D%20%3D%20%20%5Csqrt%5Bn%5D%7Ba%7D%20%5C%20%28cos%20%5C%20%20%5Cfrac%7B%5Ctheta%20%2B%20360K%7D%7Bn%7D%20%2B%20i%20%5C%20sin%20%5C%20%5Cfrac%7B%5Ctheta%20%2B360k%7D%7Bn%7D%20%29)
k= 0, 1 , 2, ..... , (n-1)
For The given complex number <span>⇒ z = 81(cos(3π/8) + i sin(3π/8))
</span>
Part (A) <span>
find the modulus for all of the fourth roots </span>
<span>∴ The modulus of the given complex number = l z l = 81
</span>
∴ The modulus of the fourth root =
Part (b) find the angle for each of the four roots
The angle of the given complex number =

There is four roots and the angle between each root =

The angle of the first root =

The angle of the second root =

The angle of the third root =

The angle of the fourth root =
Part (C): find all of the fourth roots of this
The first root =

The second root =

The third root =

The fourth root =
Answer:
6
Step-by-step explanation:
100/18=5 1/2
18*6=108
Answer:
adi's height = n-t inches
Step-by-step explanation:
from this question
we have Adi to be t inches shorter than sunnee.
sunnee's height = n inches tall
to get adis height, we have to subtract the height difference t from sunnee's height.
the height difference is how many inches by which Adi is shorter = t
adies height = sunnee's height, n - difference in height, t
= <em><u>(</u></em><em><u>n-t)</u></em><em><u> </u></em><em><u>inches</u></em>
<em><u>this </u></em><em><u>expression</u></em><em><u> </u></em><em><u>represents</u></em><em><u> </u></em><em><u>adis</u></em><em><u> height</u></em><em><u> </u></em><em><u>in </u></em><em><u>inches </u></em><em><u>.</u></em>
The answer is 25 1/4. to solve this you can do 4x25 plus 1 divided by 4. 4x25 is 100 plus 1 equals 101