Answer:
36 feet.
Step-by-step explanation:
We have been given that a ball is thrown upward from ground level. Its height h, in feet, above the ground after t seconds is
. We are asked to find the maximum height of the ball.
We can see that our given equation is a downward opening parabola, so its maximum height will be the vertex of the parabola.
To find the maximum height of the ball, we need to find y-coordinate of vertex of parabola.
Let us find x-coordinate of parabola using formula
.



So, the x-coordinate of the parabola is
. Now, we will substitute
in our given equation to find y-coordinate of parabola.






Therefore, the maximum height of the ball is 36 feet.
Answer:
me TWO
Step-by-step explanation:
Answer:
GIVE ME YOUR POINNTTSSSSSSSSSSSSSSSSSSSSSSSS
Step-by-step explanation:
no
You have the correct graph. Plug in y = 0 and solve for x to get x = -3. Do the same for x = 0 and solve to get y = -3.
x intercept = -3 which is the point (-3,0)
y intercept = -3 which is the point (0,-3)
Nice job on getting the correct graph with the correct points.
Sphere, ur head is the closest shape to a sphere