Converse Perpendicular Transversal Theorem.
If two lines are perpendicular to the same line, then the lines are parallel.
The answer to you question is 17% Of the people have not yet decided
9514 1404 393
Answer:
- 6x +y = -6
- 6x -y = 8
- 5x +y = 13
Step-by-step explanation:
To rewrite these equations from point-slope form to standard form, you can do the following:
- eliminate parentheses
- subtract the x-term
- subtract the constant on the left
- if the coefficient of x is negative, multiply by -1
Of course, any operation you do must be done <em>to both sides of the equation</em>.
__
1. y -6 = -6(x +2)
y -6 = -6x -12 . . . . . eliminate parentheses
6x +y -6 = -12 . . . . . add 6x
6x +y = -6 . . . . . . . . add 6
__
2. y +2 = 6(x -1)
y +2 = 6x -6
-6x +y +2 = -6
-6x +y = -8
6x -y = 8 . . . . . . . . multiply by -1
__
3. y -3 = -5(x -2)
y -3 = -5x +10
5x +y -3 = 10
5x +y = 13
_____
<em>Additional comment</em>
The "standard form" of a linear equation is ax+by=c for integers a, b, c. The leading coefficient (generally, 'a') should be positive, and all coefficients should be mutually prime (have no common factors). That is why we multiply by -1 in problem 2.
19: He multiplied instead of dividing which will make a totally incorrect answer
Point B on the ground is 5 cm from point E at the entrance to Ollie's house.
Ollie is at a distance of 2.45 m from the entrance to his house when he first activates the sensor.
The complete question is as follows:
Ollie has installed security lights on the side of his house that is activated by a sensor. The sensor is located at point C directly above point D. The area covered by the sensor is shown by the shaded region enclosed by triangle ABC. The distance from A to B is 4.5 m, and the distance from B to C is 6m. Angle ACB is 15°.
The objective of this information is:
- To find angle CAB and;
- Find the distance Ollie is from the entrance to his house when he first activates the sensor.
The diagrammatic representation of the information given is shown in the image attached below.
Using cosine rule to determine angle CAB, we have:

Here:





∠CAB = Sin⁻¹ (0.3451)
∠CAB = 20.19⁰
From the diagram attached;
- assuming we have an imaginary position at the base of Ollie Standing point called point F when Ollie first activates the sensor;
Then, we can say:
∠CBD = ∠GBF
∠GBF = (CAB + ACB)
(because the exterior angles of a Δ is the sum of the two interior angles.
∠GBF = 15° + 20.19°
∠GBF = 35.19°
Using the trigonometric function for the tangent of an angle.




BF = 2.55 m
Finally, the distance of Ollie║FE║ from the entrance of his bouse is:
= 5 - 2.55 m
= 2.45 m
Therefore, we can conclude that Ollie is at a distance of 2.45 m from the entrance to his house when he first activates the sensor.
Learn more about exterior angles here: