Question 1. It is graph 3 since the y-intercept in the equation is -2 and the y-intercept on the graph 3 is -2. It is also a quadratic function.
Question 2. It is graph two because the equation listed represents a quadratic function that is positive (graph opens up).
Question 3. It is graph 4 since the y-intercept is 2 and the only graph with that intercept is graph 4. Also, the equation represents a linear function.
Hope this helped :))
 
        
             
        
        
        
Answer:
(c) micrograms (µg)
Step-by-step explanation:
 
        
             
        
        
        
Answer:
-30/15 or -2
Step-by-step explanation:
2+8 = 10
3+2 = 5
14-2 = 12
4-1 = 3
10/5 - 12/3
(Find GCF)(GCF = 15)(5 times 3)
30/15 (10/5 times 3)
60/15 (12/3 times 5)
30/15 - 60/15 = -30/15 --> -2(simplified to 2)
 
        
                    
             
        
        
        
Answer:
Sum = 140
Step-by-step explanation:
We find all the terms, we know that every consecutive term, we add 2 until we reach 23:
Sum = 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23
Sum = 140
 
        
             
        
        
        
The correct answer is:  [B]:  "4 " .
______________________________________
Explanation: 
______________________________________
Refer to the table (provided within the actual question).
Note that the "inputs" ; or "x-values" ; are all listed in "chronological order" ; and are all "one (1) unit apart. and range from:  "x = -3"  to "x = 3" .
When "x = 0" ; the "output" ; or "f(x)"  is "1/4" . 
When "x = 1"  ; the "output" ; or "f(x)" is:  "1" .
_________________________________________________
So; the ratio of these two "outputs"  is:  "¼ : 1"  ; or, write as:
  " (¼) / 1 " ;   and note that:  " (¼) / 1 =  (¼) ÷ 1 = ¼.
However; note that: "1/4" ; or  "1:4" is NOT among the [answer choices given].
However, the ratio of the 2 (two) corresponding "outputs"; chronologically, 
going from when "x = 1" ; to "x = 0" ;  is:  "1 : ¼" ; or;  write as:  "1 / (¼)" ; 
And note that:  "1 / (¼)"  =  " 1 ÷ (¼) " = 1 * (4/1) = 1 * 4 = "4" .
This corresponds to:  Answer choice: [B]:  "4<span>" .
</span>_________________________________________________
Let us further confirm that this answer is correct:
_________________________________________________
When x = 3;  the "output" is:  "16" .
When x = 2;  the "output" is:  "4" .
The ratio:  "16/4 = ?  4 ? " ;    →  Yes!
_________________________________________________
When x = 2;  the "output" is:  "4" .
When x = 1;   the "output" is:  "1" .
The ratio:  "4/1  = ?  4 ? " ;    →  Yes!
_________________________________________________
When x = 1;  the "output" is:  "1" .
When x = 0; the "output" is:  "(¼)" .
The ratio:  "1 / (¼)  = ?  4 ? " ;   
   →  "1 / (¼)"  =  " 1 ÷ (¼) " = 1 * (4/1) = 1 * 4 = "4" . YES!
________________________________________________
When  x = 0; the "output" is:  "(¼)" .
When  x = -1; the "output" is:  "(¹/₁₆)" .
The ratio:  "(¼) / (¹/₁₆)  = ?  4 " ? ;  
  
   →  "(¼) / (¹/₁₆) = "(¼) ÷ (¹/₁₆) " =  "(¼) * (¹⁶/₁) = (1*16) / (4*1) = 16/4 = "4" .  Yes!
________________________________________________________
When  x = -1; the "output" is:  "(¹/₁₆)" .
When  x = -2; the "output" is:  "(¹/₆₄)" .
The ratio:  "(¹/₁₆) / (¹/₆₄)  = ?  4 " ? ;  
  
   →  "(¹/₁₆) / (¹/₆₄)  = "(¹/₁₆) ÷ (¹/₆₄)" = "(¹/₁₆) * (⁶⁴/₁)" = (1*64) / (16*1) = 64/16 = "4" . Yes!
__________________________________________________________
When  x = -2; the "output" is:  "(¹/₆₄)" .
When  x = -3; the "output" is:  "(¹/₂₅₆)" ,
The ratio:  "(¹/₆₄)/(¹/₂₅₆)  = ?  4 " ? ;  
  
 → "(¹/₆₄) / (¹/₂₅₆)"  ;
 
       =   " (¹/₆₄) ÷ (¹/₂₅₆)" = " (¹/₆₄) * (²⁵⁶/₁) " = (1*256) / (64*1) = 256/164  =  "4 " . Yes!
__________________________________________________________
  → So; as calculated; the ratio is:  "4" ;  which is: 
__________________________________________________________
  →  Answer choice:  [B]:  "4" .
__________________________________________________________