Hope this helps. If you need clarification just ask me!
Answer:
1.The force required to stop the shopping cart is, F = 12.25 N
Explanation:
Given data,
The mass of the shopping cart, m = 7 kg
The initial velocity of the shopping cart, u = 3.5 m/s
The final velocity of the shopping cart, v = 0 m/s
The time period of acceleration, t = 2 s
The change in momentum of the cart,
p = m(u - v)
= 7 (3.5 - 0)
= 24.5 kg m/s
The force is defined as the rate of change of momentum. To stop the shopping cart, the force required is given by the formula
F = p / t
= 24.5 / 2
= 12.25 N
Hence, the force required to stop the shopping cart is, F = 12.25 N
2.
We have: F = m × v/t
Here, m = 8500 Kg
v = 20 m/s
t = 10 s
Substitute their values into the expression,
F = 8500 × 20/10
F = 8500 × 2
F = 17000 N
In short, final answer would be 17000 N
Hope this helps!!
Answer:
There are three main cloud types.
The foundation consists of 10 major cloud types. In addition to cirrus, stratus, cumulus, and nimbus clouds, there are cirrostratus, cirrocumulus, altostratus, altocumulus, stratocumulus, nimbostratus, and cumulonimbus clouds. The following table places these cloud types into the four major cloud groups.
Explanation:
So false, depends what you have learned and your grade level ig
Answer:
Assume two identical cans filled with two types of soup having same mass are rolling down on an inclined plane in same conditions. In terms of inertia different types of soup will indicate different viscosity. The higher viscosity fillings indicates more part of the soup mass is rotating together with the can’s body. This means that for the can with lower viscosity soup has a lower moment of inertia and the can with higher viscosity has higher moment of inertia while the same gravity makes them to roll.
incline angle = θ ; can's mass = m ; Radius of the can's = R , Angular acceleration for Can 1 = α1 ; Angular acceleration for Can 2 = α2
T1 = Inertia of Can with high viscosity soup
T2 = Inertia of Can with low viscosity soup
M1 rolling moment of Can 1
M2 rolling moment of Can 2
equation is given by
T1*α1 = M1 - (a)
T2*α2 = M2 - (b)
M1 = M2 = m*g*R*sin(θ). (c)
as assumed T1 > T2
from the three equation (a), (b) & (c)
the α2 > α1
Angular acceleration of Can 2 is higher than Can 1. Already stated that Can 1 has more viscous soup as compared to Can 2.
Answer:
Part a)

Part b)

Explanation:
As we know that the observer is standing in front of one speaker
So here the path difference of the two sound waves reaching to the observer is given as


now phase difference is related with path difference as


here in order to find the wavelength


now we have

Part b)
Now we know that when phase difference is odd multiple of 
then in that case the the sound must be minimum
So nearest value for minimum intensity would be

so we have

so we have

now we have

